scholarly journals Intermediate-Mass-Ratio Black-Hole Binaries: Numerical Relativity Meets Perturbation Theory

2010 ◽  
Vol 104 (21) ◽  
Author(s):  
Carlos O. Lousto ◽  
Hiroyuki Nakano ◽  
Yosef Zlochower ◽  
Manuela Campanelli
2014 ◽  
Vol 23 (10) ◽  
pp. 1430022 ◽  
Author(s):  
Alexandre Le Tiec

Inspiralling and coalescing binary black holes are promising sources of gravitational radiation. The orbital motion and gravitational-wave emission of such system can be modeled using a variety of approximation schemes and numerical methods in general relativity: The post-Newtonian (PN) formalism, black hole perturbation theory (BHP), numerical relativity (NR) simulations and the effective one-body (EOB) model. We review recent work at the multiple interfaces of these analytical and numerical techniques, emphasizing the use of coordinate-invariant relationships to perform meaningful comparisons. Such comparisons provide independent checks of the validity of the various calculations, they inform the development of a universal, semi-analytical model of the binary dynamics and gravitational-wave emission and they help to delineate the respective domains of validity of each approximation method. For instance, several recent comparisons suggest that perturbation theory may find applications in a broader range of physical problems than previously thought, including the radiative inspiral of intermediate mass-ratio and comparable-mass black hole binaries.


2010 ◽  
Vol 82 (10) ◽  
Author(s):  
Carlos O. Lousto ◽  
Hiroyuki Nakano ◽  
Yosef Zlochower ◽  
Manuela Campanelli

2011 ◽  
Vol 84 (12) ◽  
Author(s):  
Hiroyuki Nakano ◽  
Yosef Zlochower ◽  
Carlos O. Lousto ◽  
Manuela Campanelli

2018 ◽  
Vol 168 ◽  
pp. 01004 ◽  
Author(s):  
Wei-Tou Ni

After first reviewing the gravitational wave (GW) spectral classification. we discuss the sensitivities of GW detection in space aimed at low frequency band (100 nHz–100 mHz) and middle frequency band (100 mHz–10 Hz). The science goals are to detect GWs from (i) Supermassive Black Holes; (ii) Extreme-Mass-Ratio Black Hole Inspirals; (iii) Intermediate-Mass Black Holes; (iv) Galactic Compact Binaries; (v) Stellar-Size Black Hole Binaries; and (vi) Relic GW Background. The detector proposals have arm length ranging from 100 km to 1.35×109 km (9 AU) including (a) Solar orbiting detectors and (b) Earth orbiting detectors. We discuss especially the sensitivities in the frequency band 0.1-10 μHz and the middle frequency band (0.1 Hz–10 Hz). We propose and discuss AMIGO as an Astrodynamical Middlefrequency Interferometric GW Observatory.


Sign in / Sign up

Export Citation Format

Share Document