scholarly journals Detection and Control of Individual Nuclear Spins Using a Weakly Coupled Electron Spin

2012 ◽  
Vol 109 (13) ◽  
Author(s):  
T. H. Taminiau ◽  
J. J. T. Wagenaar ◽  
T. van der Sar ◽  
F. Jelezko ◽  
V. V. Dobrovitski ◽  
...  
2016 ◽  
Vol 113 (42) ◽  
pp. 11738-11743 ◽  
Author(s):  
Erika Kawakami ◽  
Thibaut Jullien ◽  
Pasquale Scarlino ◽  
Daniel R. Ward ◽  
Donald E. Savage ◽  
...  

The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ∼99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ∼400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limited by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. This work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.


Author(s):  
M. M. Glazov

The discussion of the electron spin decoherence and relaxation phenomena via the hyperfine interaction with host lattice spins is presented here. The spin relaxation processes processes limit the conservation time of spin states as well as the response time of the spin system to external perturbations. The central spin model, where the spin of charge carrier interacts with the bath of nuclear spins, is formulated. We also present different methods to calculate the spin dynamics within this model. Simple but physically transparent semiclassical treatment where the nuclear spins are considered as largely static classical magnetic moments is followed by more advanced quantum mechanical approach where the feedback of electron spin dynamics on the nuclei is taken into account. The chapter concludes with an overview of experimental data and its comparison with model calculations.


2008 ◽  
Vol 22 (01n02) ◽  
pp. 27-32
Author(s):  
REN-BAO LIU ◽  
WANG YAO ◽  
L. J. SHAM

The electron spin decoherence by nuclear spins in semiconductor quantum dots is caused by quantum entanglement between the electron and the nuclei. The many-body dynamics problem of the interacting nuclear spins can be solved with the pair-correlation approximation which treats the nuclear spin flip-flops as mutually independent. The nuclear spin dynamics can be controlled by simply flipping the electron spin so that the electron is disentangled from the nuclei and hence its lost coherence is restored.


Science ◽  
2018 ◽  
Vol 362 (6412) ◽  
pp. 336-339 ◽  
Author(s):  
Philip Willke ◽  
Yujeong Bae ◽  
Kai Yang ◽  
Jose L. Lado ◽  
Alejandro Ferrón ◽  
...  

Taking advantage of nuclear spins for electronic structure analysis, magnetic resonance imaging, and quantum devices hinges on knowledge and control of the surrounding atomic-scale environment. We measured and manipulated the hyperfine interaction of individual iron and titanium atoms placed on a magnesium oxide surface by using spin-polarized scanning tunneling microscopy in combination with single-atom electron spin resonance. Using atom manipulation to move single atoms, we found that the hyperfine interaction strongly depended on the binding configuration of the atom. We could extract atom- and position-dependent information about the electronic ground state, the state mixing with neighboring atoms, and properties of the nuclear spin. Thus, the hyperfine spectrum becomes a powerful probe of the chemical environment of individual atoms and nanostructures.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hyunseok Oh ◽  
Jiwon Yun ◽  
M. H. Abobeih ◽  
Kyung-Hoon Jung ◽  
Kiho Kim ◽  
...  

Abstract Efficiently detecting and characterizing individual spins in solid-state hosts is an essential step to expand the fields of quantum sensing and quantum information processing. While selective detection and control of a few 13C nuclear spins in diamond have been demonstrated using the electron spin of nitrogen-vacancy (NV) centers, a reliable, efficient, and automatic characterization method is desired. Here, we develop an automated algorithmic method for decomposing spectral data to identify and characterize multiple nuclear spins in diamond. We demonstrate efficient nuclear spin identification and accurate reproduction of hyperfine interaction components for both virtual and experimental nuclear spectroscopy data. We conduct a systematic analysis of this methodology and discuss the range of hyperfine interaction components of each nuclear spin that the method can efficiently detect. The result demonstrates a systematic approach that automatically detects nuclear spins with the aid of computational methods, facilitating the future scalability of devices.


2013 ◽  
Vol 8 (7) ◽  
pp. 487-492 ◽  
Author(s):  
Sang-Yun Lee ◽  
Matthias Widmann ◽  
Torsten Rendler ◽  
Marcus W. Doherty ◽  
Thomas M. Babinec ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document