scholarly journals Algorithmic decomposition for efficient multiple nuclear spin detection in diamond

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hyunseok Oh ◽  
Jiwon Yun ◽  
M. H. Abobeih ◽  
Kyung-Hoon Jung ◽  
Kiho Kim ◽  
...  

Abstract Efficiently detecting and characterizing individual spins in solid-state hosts is an essential step to expand the fields of quantum sensing and quantum information processing. While selective detection and control of a few 13C nuclear spins in diamond have been demonstrated using the electron spin of nitrogen-vacancy (NV) centers, a reliable, efficient, and automatic characterization method is desired. Here, we develop an automated algorithmic method for decomposing spectral data to identify and characterize multiple nuclear spins in diamond. We demonstrate efficient nuclear spin identification and accurate reproduction of hyperfine interaction components for both virtual and experimental nuclear spectroscopy data. We conduct a systematic analysis of this methodology and discuss the range of hyperfine interaction components of each nuclear spin that the method can efficiently detect. The result demonstrates a systematic approach that automatically detects nuclear spins with the aid of computational methods, facilitating the future scalability of devices.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kyunghoon Jung ◽  
M. H. Abobeih ◽  
Jiwon Yun ◽  
Gyeonghun Kim ◽  
Hyunseok Oh ◽  
...  

AbstractThe detection of nuclear spins using individual electron spins has enabled diverse opportunities in quantum sensing and quantum information processing. Proof-of-principle experiments have demonstrated atomic-scale imaging of nuclear-spin samples and controlled multi-qubit registers. However, to image more complex samples and to realize larger-scale quantum processors, computerized methods that efficiently and automatically characterize spin systems are required. Here, we realize a deep learning model for automatic identification of nuclear spins using the electron spin of single nitrogen-vacancy (NV) centers in diamond as a sensor. Based on neural network algorithms, we develop noise recovery procedures and training sequences for highly non-linear spectra. We apply these methods to experimentally demonstrate the fast identification of 31 nuclear spins around a single NV center and accurately determine the hyperfine parameters. Our methods can be extended to larger spin systems and are applicable to a wide range of electron-nuclear interaction strengths. These results pave the way towards efficient imaging of complex spin samples and automatic characterization of large spin-qubit registers.


2015 ◽  
Vol 184 ◽  
pp. 173-182 ◽  
Author(s):  
M. S. Blok ◽  
N. Kalb ◽  
A. Reiserer ◽  
T. H. Taminiau ◽  
R. Hanson

Single defect centers in diamond have emerged as a powerful platform for quantum optics experiments and quantum information processing tasks. Connecting spatially separated nodes via optical photons into a quantum network will enable distributed quantum computing and long-range quantum communication. Initial experiments on trapped atoms and ions as well as defects in diamond have demonstrated entanglement between two nodes over several meters. To realize multi-node networks, additional quantum bit systems that store quantum states while new entanglement links are established are highly desirable. Such memories allow for entanglement distillation, purification and quantum repeater protocols that extend the size, speed and distance of the network. However, to be effective, the memory must be robust against the entanglement generation protocol, which typically must be repeated many times. Here we evaluate the prospects of using carbon nuclear spins in diamond as quantum memories that are compatible with quantum networks based on single nitrogen vacancy (NV) defects in diamond. We present a theoretical framework to describe the dephasing of the nuclear spins under repeated generation of NV spin-photon entanglement and show that quantum states can be stored during hundreds of repetitions using typical experimental coupling parameters. This result demonstrates that nuclear spins with weak hyperfine couplings are promising quantum memories for quantum networks.


2018 ◽  
Vol 16 (01) ◽  
pp. 1850009 ◽  
Author(s):  
ZhuoYu Shan ◽  
Yong Zhang

Quantum computing and quantum communication have become the most popular research topic. Nitrogen-vacancy (NV) centers in diamond have been shown the great advantage of implementing quantum information processing. The generation of entanglement between NV centers represents a fundamental prerequisite for all quantum information technologies. In this paper, we propose a scheme to realize the high-fidelity storage and extraction of quantum entanglement information based on the NV centers at room temperature. We store the entangled information of a pair of entangled photons in the Bell state into the nuclear spins of two NV centers, which can make these two NV centers entangled. And then we illuminate how to extract the entangled information from NV centers to prepare on-demand entangled states for optical quantum information processing. The strategy of engineering entanglement demonstrated here maybe pave the way towards a NV center-based quantum network.


Science ◽  
2018 ◽  
Vol 362 (6412) ◽  
pp. 336-339 ◽  
Author(s):  
Philip Willke ◽  
Yujeong Bae ◽  
Kai Yang ◽  
Jose L. Lado ◽  
Alejandro Ferrón ◽  
...  

Taking advantage of nuclear spins for electronic structure analysis, magnetic resonance imaging, and quantum devices hinges on knowledge and control of the surrounding atomic-scale environment. We measured and manipulated the hyperfine interaction of individual iron and titanium atoms placed on a magnesium oxide surface by using spin-polarized scanning tunneling microscopy in combination with single-atom electron spin resonance. Using atom manipulation to move single atoms, we found that the hyperfine interaction strongly depended on the binding configuration of the atom. We could extract atom- and position-dependent information about the electronic ground state, the state mixing with neighboring atoms, and properties of the nuclear spin. Thus, the hyperfine spectrum becomes a powerful probe of the chemical environment of individual atoms and nanostructures.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. J. Degen ◽  
S. J. H. Loenen ◽  
H. P. Bartling ◽  
C. E. Bradley ◽  
A. L. Meinsma ◽  
...  

AbstractA promising approach for multi-qubit quantum registers is to use optically addressable spins to control multiple dark electron-spin defects in the environment. While recent experiments have observed signatures of coherent interactions with such dark spins, it is an open challenge to realize the individual control required for quantum information processing. Here, we demonstrate the heralded initialisation, control and entanglement of individual dark spins associated to multiple P1 centers, which are part of a spin bath surrounding a nitrogen-vacancy center in diamond. We realize projective measurements to prepare the multiple degrees of freedom of P1 centers—their Jahn-Teller axis, nuclear spin and charge state—and exploit these to selectively access multiple P1s in the bath. We develop control and single-shot readout of the nuclear and electron spin, and use this to demonstrate an entangled state of two P1 centers. These results provide a proof-of-principle towards using dark electron-nuclear spin defects as qubits for quantum sensing, computation and networks.


Author(s):  
A. Ardavan ◽  
G. A. D. Briggs

Superposition and entanglement are uniquely quantum phenomena. Superposition incorporates a phase that contains information surpassing any classical mixture. Entanglement offers correlations between measurements in quantum systems that are stronger than any that would be possible classically. These give quantum computing its spectacular potential, but the implications extend far beyond quantum information processing. Early applications may be found in entanglement-enhanced sensing and metrology. Quantum spins in condensed matter offer promising candidates for investigating and exploiting superposition and entanglement, and enormous progress is being made in quantum control of such systems. In gallium arsenide (GaAs), individual electron spins can be manipulated and measured, and singlet–triplet states can be controlled in double-dot structures. In silicon, individual electron spins can be detected by ionization of phosphorus donors, and information can be transferred from electron spins to nuclear spins to provide long memory times. Electron and nuclear spins can be manipulated in nitrogen atoms incarcerated in fullerene molecules, which in turn can be assembled in ordered arrays. Spin states of charged nitrogen vacancy centres in diamond can be manipulated and read optically. Collective spin states in a range of materials systems offer scope for holographic storage of information. Conditions are now excellent for implementing superposition and entanglement in spintronic devices, thereby opening up a new era of quantum technologies.


2016 ◽  
Vol 113 (42) ◽  
pp. 11738-11743 ◽  
Author(s):  
Erika Kawakami ◽  
Thibaut Jullien ◽  
Pasquale Scarlino ◽  
Daniel R. Ward ◽  
Donald E. Savage ◽  
...  

The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ∼99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ∼400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limited by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. This work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.


Author(s):  
Francisco Javier González ◽  
Raúl Coto

Abstract Solid-state quantum registers are exceptional for storing quantum information at room temperature with long coherence time. Nevertheless, practical applications toward quantum supremacy require even longer coherence time to allow for more complex algorithms. In this work we propose a quantum register that lies in a decoherence-protected subspace to be implemented with nuclear spins nearby a Nitrogen-Vacancy center in diamond. The quantum information is encoded in two logical states composed of two Carbon-13 nuclear spins, while an electron spin is used as ancilla for initialization and control. Moreover, by tuning an off-axis magnetic field we enable non-nuclear-spin- preserving transitions that we use for preparing and manipulating the register through Stimulating Raman Adiabatic Passage. Furthermore, we consider more elaborated sequences to improve simultaneous control over the system yielding decreased gate time.


2020 ◽  
Vol 2 (3) ◽  
pp. 100-118
Author(s):  
A. S. German ◽  

Introduction. Currently, the Supreme Court of the Russian Federation, like many state bodies, is faced with a global challenge – the coronavirus pandemic, which has affected all public processes. The need for social distancing has contributed to the more active use of modern technologies that facilitate remote court hearings. Theoretical basis. Methods. The theoretical basis of the study were the Russian and foreign scientific works devoted to the problems of introducing information technologies into judicial activity. The methodological basis of the study was a systematic approach that made it possible to consider the possibilities of remote justice in its relationship to significant factors of a legal and organisational nature. The study used the methods of logical generalisations, analysis and synthesis, together with a systematic approach and the method of comparative jurisprudence. Results. The article briefly presents the results of a systematic analysis of measures carried out by the Supreme Court of the Russian Federation aimed at ensuring the widespread use of remote technologies in the administration of justice. Discussion and Conclusion. Given the current pandemic situation, the Supreme Court of the Russian Federation has introduced integrated related web conferencing and video conferencing technologies for remote court hearings. These technologies began to be actively used by courts during the pandemic period. Their application ensures a reasonable time frame for legal proceedings and makes it possible to ensure the availability of justice even in conditions of social distancing. The undoubted advantage of remote technologies is their potential to reduce procedural costs in the course of legal proceedings. However, the issues under consideration require further research, as well as preparation of conceptual suggestions to the legislator aimed at optimising procedural legislation.


Author(s):  
M. M. Glazov

In this chapter, some prospects in the field of electron and nuclear spin dynamics are outlined. Particular emphasis is put ona situation where the hyperfine interaction is so strong that it leads to a qualitative rearrangement of the energy spectrum resulting in the coherent excitation transfer between the electron and nucleus. The strong coupling between the spin of the charge carrier and of the nucleus is realized, for example in the case of deep impurity centers in semiconductors or in isotopically purified systems. We also discuss the effect of the nuclear spin polaron, that is ordered state, formation at low enough temperatures of nuclear spins, where the orientation of the carrier spin results in alignment of the spins of nucleus interacting with the electron or hole.


Sign in / Sign up

Export Citation Format

Share Document