scholarly journals Effect of Spin-Orbit Interactions on the 0.7 Anomaly in Quantum Point Contacts

2014 ◽  
Vol 113 (26) ◽  
Author(s):  
Olga Goulko ◽  
Florian Bauer ◽  
Jan Heyder ◽  
Jan von Delft
2017 ◽  
Vol 119 (19) ◽  
Author(s):  
Dennis H. Schimmel ◽  
Benedikt Bruognolo ◽  
Jan von Delft

2010 ◽  
Vol 91 (6) ◽  
pp. 67010 ◽  
Author(s):  
Y. Komijani ◽  
M. Csontos ◽  
I. Shorubalko ◽  
T. Ihn ◽  
K. Ensslin ◽  
...  

Nature ◽  
2013 ◽  
Vol 501 (7465) ◽  
pp. 73-78 ◽  
Author(s):  
Florian Bauer ◽  
Jan Heyder ◽  
Enrico Schubert ◽  
David Borowsky ◽  
Daniela Taubert ◽  
...  

2006 ◽  
Vol 3 (12) ◽  
pp. 4168-4171 ◽  
Author(s):  
Mikio Eto ◽  
Tetsuya Hayashi ◽  
Yuji Kurotani ◽  
Hiroto Yokouchi

Author(s):  
A. Iagallo ◽  
N. Paradiso ◽  
S. Roddaro ◽  
C. Reichl ◽  
W. Wegscheider ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
K. L. Hudson ◽  
A. Srinivasan ◽  
O. Goulko ◽  
J. Adam ◽  
Q. Wang ◽  
...  

AbstractOne dimensional semiconductor systems with strong spin-orbit interaction are both of fundamental interest and have potential applications to topological quantum computing. Applying a magnetic field can open a spin gap, a pre-requisite for Majorana zero modes. The spin gap is predicted to manifest as a field dependent dip on the first 1D conductance plateau. However, disorder and interaction effects make identifying spin gap signatures challenging. Here we study experimentally and numerically the 1D channel in a series of low disorder p-type GaAs quantum point contacts, where spin-orbit and hole-hole interactions are strong. We demonstrate an alternative signature for probing spin gaps, which is insensitive to disorder, based on the linear and non-linear response to the orientation of the applied magnetic field, and extract a spin-orbit gap ΔE ≈ 500 μeV. This approach could enable one-dimensional hole systems to be developed as a scalable and reproducible platform for topological quantum applications.


Sign in / Sign up

Export Citation Format

Share Document