scholarly journals Effective Wall Friction in Wall-Bounded 3D Dense Granular Flows

2015 ◽  
Vol 115 (15) ◽  
Author(s):  
Riccardo Artoni ◽  
Patrick Richard
Author(s):  
Yesaswi N. Chilamkurti ◽  
Richard D. Gould

The current paper focusses on the characterization of gravity-driven dry granular flows in cylindrical tubes. With a motive of using dense particulate media as heat transfer fluids (HTF), the main focus was to address the characteristics of flow regimes with a packing fraction of ∼60%. In a previous work [1], experimental and computational studies were conducted to understand the effects of different geometrical parameters on the flow physics. The current paper is an extension of that work to gain more insights into the granular flow physics. The three-dimensional computer simulations were conducted by implementing the Discrete Element Method (DEM) for the Lagrangian modelling of particles. Hertz-Mindilin models were used for the soft-particle formulations of inter-particulate contacts. Simulations were conducted to examine the particulate velocities and flow rates to understand the rheology in the dense flow regime. Past studies suggested the existence of a Gaussian mean velocity profile for dense gravity-driven granular flows. These observations were further analyzed by studying the influence of geometrical parameters on the same. The current work thus focusses on studying the rheology of dense granular flows and obtaining a better understanding of the velocity profiles, the wall friction characteristics, and the particle-wall contact behavior.


2021 ◽  
Vol 249 ◽  
pp. 03026
Author(s):  
Cheng-Chuan Lin ◽  
Riccardo Artoni ◽  
Fu-Ling Yang ◽  
Patrick Richard

A depth-weakening wall friction coefficient, µw, has been reported from three-dimensional numerical simulations of steady and transient dense granular flows. To understand the degradation mechanisms, a scaling law for µw/ f and χ has been proposed where f is the intrinsic particle-wall friction and χ is the ratio of slip velocity to square root of granular temperature (Artoni & Richard, Phys. Rev. Lett., vol. 115 (15), 2015, 158001). Independently, a friction degradation model has been derived which describes a monotonically diminishing friction depends on a ratio of grain angular and slip velocities, Ω (Yang & Huang, Granular Matter, vol. 18 (4), 2016, 77). In search of experimental evidence for how these two parameters degrade the µw, an annular shear cell experiment was performed to estimate the bulk granular temperature, angular and slip velocities at sidewall through image-processing. Meanwhile, µw was measured by a force sensor to confirm the weakening towards the creep zone. The measured µw/ f − χ and µw/ f − Ω were both well-fitted to the corresponding models showing that both granular temperature and angular velocity are significant mechanisms to degrade the µw which broadens the research perspective on modeling the boundary condition of dense granular flows.


Soft Matter ◽  
2021 ◽  
Author(s):  
Riccardo Artoni ◽  
Michele Larcher ◽  
James T. Jenkins ◽  
Patrick Richard

The self-diffusivity tensor in homogeneously sheared dense granular flows is anisotropic. We show how its components depend on solid fraction, restitution coefficient, shear rate, and granular temperature.


Shock Waves ◽  
2007 ◽  
Vol 17 (5) ◽  
pp. 337-349 ◽  
Author(s):  
Piroz Zamankhan

2010 ◽  
Author(s):  
Ashish V. Orpe ◽  
Chris H. Rycroft ◽  
Arshad A. Kudrolli ◽  
Joe Goddard ◽  
Pasquale Giovine ◽  
...  

2005 ◽  
Vol 72 (5) ◽  
Author(s):  
Gregg Lois ◽  
Anaël Lemaître ◽  
Jean M. Carlson

Sign in / Sign up

Export Citation Format

Share Document