scholarly journals Long Spin Diffusion Length in Few-Layer Graphene Flakes

2016 ◽  
Vol 117 (14) ◽  
Author(s):  
W. Yan ◽  
L. C. Phillips ◽  
M. Barbone ◽  
S. J. Hämäläinen ◽  
A. Lombardo ◽  
...  
2021 ◽  
Vol 129 (1) ◽  
pp. 013901
Author(s):  
A. Yamada ◽  
M. Yamada ◽  
T. Shiihara ◽  
M. Ikawa ◽  
S. Yamada ◽  
...  

2018 ◽  
Vol 4 (6) ◽  
pp. eaat1670 ◽  
Author(s):  
Xinde Tao ◽  
Qi Liu ◽  
Bingfeng Miao ◽  
Rui Yu ◽  
Zheng Feng ◽  
...  

2019 ◽  
Vol 29 (1) ◽  
pp. 47-49 ◽  
Author(s):  
Muhammad Yasir ◽  
Silvia Bistarelli ◽  
Antonino Cataldo ◽  
Maurizio Bozzi ◽  
Luca Perregrini ◽  
...  

2012 ◽  
Vol 508 ◽  
pp. 266-270 ◽  
Author(s):  
K. Harii ◽  
Z. Qiu ◽  
T. Iwashita ◽  
Y. Kajiwara ◽  
K. Uchida ◽  
...  

A Spin Current Generated by Spin Pumping in a Ferromagnetic/Nonmagnetic/Spin-Sink Trilayer Film Is Calculated Based on the Spin Pumping Theory and the Standard Spin Diffusion Equation. By Attaching the Spin-Sink Layer, the Injected Spin Current Is Drastically Enhanced when the Interlayer Thickness Is Shorter than the Spin Diffusion Length of the Interlayer. We Also Provided the Formula of the Charge Current which Is Induced from the Pumped Spin Current via the Inverse Spin-Hall Effect.


SPIN ◽  
2020 ◽  
Vol 10 (04) ◽  
pp. 2030001
Author(s):  
Kuntal Roy

Spin-devices are switched by flipping spins without moving charge in space and this can lead to ultra-low-energy switching replacing traditional transistors in beyond Moore’s law era. In particular, the electric field-induced magnetization switching has emerged to be an energy-efficient paradigm. Here, we review the recent developments on ultra-low-energy, area-efficient, and fast spin-devices using multiferroic magnetoelectric composites. It is shown that both digital logic gates and analog computing with transistor-like high-gain region in the input-output characteristics of multiferroic composites are feasible. We also review the equivalent spin-circuit representation of spin-devices by considering spin potential and spin current similar to the charge-based counterparts using Kirchhoff’s voltage/current laws, which is necessary for the development of large-scale circuits. We review the spin-circuit representation of spin pumping, which happens anyway when there is a material adjacent to a rotating magnetization and therefore it is particularly necessary to be incorporated in device modeling. Such representation is also useful for understanding and proposing experiments. In spin-circuit representation, spin diffusion length is an important parameter and it is shown that a thickness-dependent spin diffusion length reflecting Elliott–Yafet spin relaxation mechanism in platinum is necessary to match the experimental results.


Sign in / Sign up

Export Citation Format

Share Document