scholarly journals Fate of the Hoop Conjecture in Quantum Gravity

2017 ◽  
Vol 119 (23) ◽  
Author(s):  
Fabio Anzà ◽  
Goffredo Chirco
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Antonio Aurilia ◽  
Euro Spallucci

We propose a quantum gravity-extended form of the classical length contraction law obtained in special relativity. More specifically, the framework of our discussion is the UV self-complete theory of quantum gravity. We show how our results are consistent with (i) the generalized form of the uncertainty principle (GUP), (ii) the so-called hoop-conjecture, and (iii) the intriguing notion of “classicalization” of trans-Planckian physics. We argue that there is a physical limit to the Lorentz contraction rule in the form of some minimal universal length determined by quantum gravity, say the Planck Length, or any of its current embodiments such as the string length, or the TeV quantum gravity length scale. In the latter case, we determine the critical boost that separates the ordinary “particle phase,” characterized by the Compton wavelength, from the “black hole phase,” characterized by the effective Schwarzschild radius of the colliding system.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
K. K. Nandi ◽  
R. N. Izmailov ◽  
A. A. Potapov ◽  
N. G. Migranov

AbstractRecently, Hod has shown that Thorne’s hoop conjecture ($$\frac{C(R)}{4\pi M(r\le R)} \le 1\Rightarrow $$ C ( R ) 4 π M ( r ≤ R ) ≤ 1 ⇒ horizon) is violated by stationary black holes and so he proposed a new inverse hoop conjecture characterizing such black holes (that is, horizon $$\Rightarrow \mathcal {H =} \frac{\pi \mathcal {A} }{\mathcal {C}_{{eq} }^{2}} \le 1$$ ⇒ H = π A C eq 2 ≤ 1 ). In this paper, it is exemplified that stationary hairy black holes, endowed with Lorentz symmetry violating Bumblebee vector field related to quantum gravity and dilaton field of string theory, also respect the inverse conjecture. It is shown that stationary hairy singularity, recently derived by Bogush and Galt’sov, does not respect the conjecture thereby protecting it. However, curiously, there are two horizonless stationary wormholes that can also respect the conjecture. Thus one may also state that throat $$\Rightarrow \mathcal {H \le }1$$ ⇒ H ≤ 1 , suggesting that the inverse conjecture may be a necessary but not sufficient proposition.


2019 ◽  
Author(s):  
Vitaly Kuyukov

Many approaches to quantum gravity consider the revision of the space-time geometry and the structure of elementary particles. One of the main candidates is string theory. It is possible that this theory will be able to describe the problem of hierarchy, provided that there is an appropriate Calabi-Yau geometry. In this paper we will proceed from the traditional view on the structure of elementary particles in the usual four-dimensional space-time. The only condition is that quarks and leptons should have a common emerging structure. When a new formula for the mass of the hierarchy is obtained, this structure arises from topological quantum theory and a suitable choice of dimensional units.


2020 ◽  
Author(s):  
Vitaly Kuyukov
Keyword(s):  

Braking effect in quantum gravity


2019 ◽  
Vol 51 (5) ◽  
Author(s):  
S. Ariwahjoedi ◽  
I. Husin ◽  
I. Sebastian ◽  
F. P. Zen

Nature ◽  
2003 ◽  
Vol 424 (6952) ◽  
pp. 1019-1021 ◽  
Author(s):  
T. Jacobson ◽  
S. Liberati ◽  
D. Mattingly

Sign in / Sign up

Export Citation Format

Share Document