scholarly journals A strong astrophysical constraint on the violation of special relativity by quantum gravity

Nature ◽  
2003 ◽  
Vol 424 (6952) ◽  
pp. 1019-1021 ◽  
Author(s):  
T. Jacobson ◽  
S. Liberati ◽  
D. Mattingly
Universe ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. 243
Author(s):  
José G. Pereira ◽  
Diego F. López

General relativity has two fundamental problems that render it unsuitable for tackling the gravitational field’s quantization. The first problem is the lack of a genuine gravitational variable representing gravitation only, inertial forces apart. The second problem is its incompatibility with quantum mechanics, a problem inherited from the more fundamental conflict of special relativity with quantum mechanics. A procedure to overcome these difficulties is outlined, which amounts to replacing general relativity with its teleparallel equivalent and the Poincaré-invariant special relativity with the de Sitter-invariant special relativity. Those replacements give rise to the de Sitter-modified teleparallel gravity, which does not have the two mentioned problems. It can thus be considered an improved alternative approach to quantum gravity.


2020 ◽  
Author(s):  
Vitaly Kuyukov

Quantum gravity and relativity


Author(s):  
Claus Kiefer

This chapter notes that quantum gravity places the concept of time on a new level. In the absence of experimental hints, mathematical and conceptual issues must be chosen as the guides in the search for such a theory. Just as reconceiving classical notions of time was key for Einstein, in his discovery of special relativity, so too many believe that time will again hold the clue for theoretical advancement, but this time with quantum gravity. The chapter details the challenge of reconciling quantum theory with relativity, concentrating especially on why time in particular causes trouble. It describes a result in canonical quantum gravity which is possibly of signal importance, namely, that fundamentally there is no time at all, and discusses the problem of time, quantization, semiclassical time, loop quantum gravity, and string theory.


2021 ◽  
Vol 51 (3) ◽  
Author(s):  
Bryan Cheng ◽  
James Read

AbstractWhat, if anything, would be wrong with replacing the light postulate in Einstein’s 1905 formulation of special relativity with a ‘sound postulate’, stating that the speed of sound is independent of the speed of the source? After reviewing the historical reasons underlying the particular focus on light in the special theory, we consider the circumstances under which such a theory of ‘sonic relativity’ would be justified on empirical grounds. We then consider the philosophical upshots of ‘sonic relativity’ for four contemporary areas of investigation in the philosophy of spacetime: (i) global versus subsystem symmetries, (ii) dynamical versus geometrical approaches to spacetime, (iii) the possibility of a preferred frame in theories of quantum gravity, and (iv) spacetime functionalism.


2005 ◽  
Vol 708 (1-3) ◽  
pp. 411-433 ◽  
Author(s):  
Florian Girelli ◽  
Etera R. Livine ◽  
Daniele Oriti

2013 ◽  
Vol 22 (05) ◽  
pp. 1350020 ◽  
Author(s):  
AHMED FARAG ALI ◽  
ABDEL NASSER TAWFIK

Based on the generalized uncertainty principle (GUP), proposed by some approaches to quantum gravity such as string theory and doubly special relativity theories, we investigate the effect of GUP on the thermodynamic properties of compact stars with two different components. We note that the existence of quantum gravity correction tends to resist the collapse of stars if the GUP parameter α is taking values between Planck scale and electroweak scale. Comparing with approaches, it is found that the radii of compact stars become smaller relative to the cases utilizing standard Heisenberg principle. Increasing energy almost exponentially decreases the radii of compact stars.


Author(s):  
Alireza Jamali

Motivated by the well-known contradiction of special relativity and the heat equation, a wave equation for temperature scalar field is presented that also resolves the old controversy of (Lorentz) transformation of temperature and entropy. After showing that the current dogma of temperature and entropy being emergent concepts is based on but a logical fallacy, it is proposed that single particles posses entropy. This principle of fundamentality of entropy is then shown to be compatible with the equipartition theorem by yielding corrections in the quantum gravity regime.


Sign in / Sign up

Export Citation Format

Share Document