scholarly journals Time Evolution of Correlation Functions in Quantum Many-Body Systems

2020 ◽  
Vol 124 (11) ◽  
Author(s):  
Álvaro M. Alhambra ◽  
Jonathon Riddell ◽  
Luis Pedro García-Pintos
Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 984
Author(s):  
Regina Finsterhölzl ◽  
Manuel Katzer ◽  
Andreas Knorr ◽  
Alexander Carmele

This paper presents an efficient algorithm for the time evolution of open quantum many-body systems using matrix-product states (MPS) proposing a convenient structure of the MPS-architecture, which exploits the initial state of system and reservoir. By doing so, numerically expensive re-ordering protocols are circumvented. It is applicable to systems with a Markovian type of interaction, where only the present state of the reservoir needs to be taken into account. Its adaption to a non-Markovian type of interaction between the many-body system and the reservoir is demonstrated, where the information backflow from the reservoir needs to be included in the computation. Also, the derivation of the basis in the quantum stochastic Schrödinger picture is shown. As a paradigmatic model, the Heisenberg spin chain with nearest-neighbor interaction is used. It is demonstrated that the algorithm allows for the access of large systems sizes. As an example for a non-Markovian type of interaction, the generation of highly unusual steady states in the many-body system with coherent feedback control is demonstrated for a chain length of N=30.


Author(s):  
Juan Pérez-Mercade

We present a scenario that is useful for describing hierarchies within classes of many-component systems. Although this scenario may be quite general, it will be illustrated in the case of many-body systems whose space-time evolution can be described by a class of stochastic parabolic nonlinear partial differential equations. The stochastic component we will consider is in the form of additive noise, but other forms of noise such as multiplicative noise may also be incorporated. It will turn out that hierarchical behavior is only one of a class of asymptotic behaviors that can emerge when an out-of-equilibrium system is coarse grained. This phenomenology can be analyzed and described using the renormalization group (RG) [6, 15]. It corresponds to the existence of complex fixed points for the parameters characterizing the system. As is well known (see, for example, Hochberg and Perez-Mercader [8] and Onuki [12] and the references cited there), parameters such as viscosities, noise couplings, and masses evolve with scale. In other words, their values depend on the scale of resolution at which the system is observed (examined). These scaledependent parameters are called effective parameters. The evolutionary changes due to coarse graining or, equivalently, changes in system size, are analyzed using the RG and translate into differential equations for the probability distribution function [8] of the many-body system, or the n-point correlation functions and the effective parameters. Under certain conditions and for systems away from equilibrium, some of the fixed points of the equations describing the scale dependence of the effective parameters can be complex; this translates into complex anomalous dimensions for the stochastic fields and, therefore, the correlation functions of the field develop a complex piece. We will see that basic requirements such as reality of probabilities and maximal correlation lead, in the case of complex fixed points, to hierarchical behavior. This is a first step for the generalization of extensive behavior as described by real power laws to the case of complex exponents and the study of hierarchical behavior.


2019 ◽  
Vol 7 (5) ◽  
Author(s):  
Luis A. Colmenarez ◽  
Paul A. McClarty ◽  
Masud Haque ◽  
David J. Luitz

Ergodic quantum many-body systems satisfy the eigenstate thermalization hypothesis (ETH). However, strong disorder can destroy ergodicity through many-body localization (MBL) – at least in one dimensional systems – leading to a clear signal of the MBL transition in the probability distributions of energy eigenstate expectation values of local operators. For a paradigmatic model of MBL, namely the random-field Heisenberg spin chain, we consider the full probability distribution of eigenstate correlation functions across the entire phase diagram. We find gaussian distributions at weak disorder, as predicted by pure ETH. At intermediate disorder – in the thermal phase – we find further evidence for anomalous thermalization in the form of heavy tails of the distributions. In the MBL phase, we observe peculiar features of the correlator distributions: a strong asymmetry in S_i^z S_{i+r}^zSizSi+rz correlators skewed towards negative values; and a multimodal distribution for spin-flip correlators. A quantitative quasi-degenerate perturbation theory calculation of these correlators yields a surprising agreement of the full distribution with the exact results, revealing, in particular, the origin of the multiple peaks in the spin-flip correlator distribution as arising from the resonant and off-resonant admixture of spin configurations. The distribution of the S_i^zS_{i+r}^zSizSi+rz correlator exhibits striking differences between the MBL and Anderson insulator cases.


2021 ◽  
pp. 49-66
Author(s):  
Robert W. Batterman

This chapter begins the argument that the best way to understand the relations of relative autonomy between theories at different scales is through a mesoscale hydrodynamic description of many-body systems. It focuses on the evolution of conserved quantities of those systems in near, but out of equilibrium states. A relatively simple example is presented of a system of spins where the magnetization is the conserved quantity of interest. The chapter introduces the concepts of order parameters, of local quantities, and explains why we should be focused on the gradients of densities that inhabit the mesoscale between the scale of the continuum and that of the atomic. It introduces the importance of correlation functions and linear response.


Physica ◽  
1971 ◽  
Vol 54 (4) ◽  
pp. 477-503 ◽  
Author(s):  
R. Balescu ◽  
J. Wallenborn

Sign in / Sign up

Export Citation Format

Share Document