scholarly journals Motility-Induced Microphase and Macrophase Separation in a Two-Dimensional Active Brownian Particle System

2020 ◽  
Vol 125 (17) ◽  
Author(s):  
Claudio B. Caporusso ◽  
Pasquale Digregorio ◽  
Demian Levis ◽  
Leticia F. Cugliandolo ◽  
Giuseppe Gonnella
2020 ◽  
Vol 101 (2) ◽  
Author(s):  
Kanaya Malakar ◽  
Arghya Das ◽  
Anupam Kundu ◽  
K. Vijay Kumar ◽  
Abhishek Dhar

2017 ◽  
Vol 96 (6) ◽  
Author(s):  
Yunyun Li ◽  
Fabio Marchesoni ◽  
Tanwi Debnath ◽  
Pulak K. Ghosh

2013 ◽  
Vol 392 (19) ◽  
pp. 4210-4215 ◽  
Author(s):  
Wei Guo ◽  
Can-Jun Wang ◽  
Lu-Chun Du ◽  
Dong-Cheng Mei

Soft Matter ◽  
2018 ◽  
Vol 14 (18) ◽  
pp. 3581-3589 ◽  
Author(s):  
Eric W. Burkholder ◽  
John F. Brady

We generalize the active Brownian particle model to account for hydrodynamic interactions.


Soft Matter ◽  
2020 ◽  
Vol 16 (20) ◽  
pp. 4776-4787 ◽  
Author(s):  
Amir Shee ◽  
Abhishek Dhar ◽  
Debasish Chaudhuri

A polymer-mapping of active Brownian particle (ABP)-trajectories, and exact calculation of the moments of dynamical variables provide insights into the mechanical crossovers in polymers with length, and related dynamical crossovers in ABP-motion.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Christina Kurzthaler ◽  
Sebastian Leitmann ◽  
Thomas Franosch

Abstract Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.


1988 ◽  
Vol 190 ◽  
pp. 201-215 ◽  
Author(s):  
Shimon Haber ◽  
Roberto Mauri

Time-dependent mean velocities and dispersion coefficients are evaluated for a general two-dimensional laminar flow. A Lagrangian method is adopted by which a Brownian particle is traced in an artificially restructured velocity field. Asymptotic expressions for short, medium and long periods of time are obtained for Couette flow, plane Poiseuille flow and open-channel flow over an inclined flat surface. A new formula is suggested by which the Taylor dispersion coefficient can be evaluated from purely kinematical considerations. Within an error of less than one percent, over the entire time domain and for various flow fields, a very simple analytical expression is derived for the time-dependent dispersion coefficient \[ \tilde{D}(\tau) = D + D^T\left(1-\frac{1-{\rm e}^{-\alpha\tau}}{a\tau}\right), \] where D is the molecular diffusion coefficient, DT denotes the Taylor dispersion coefficient, τ stands for the non-dimensional time π2Dt/Y/, Y is the distance between walls and a = (N + 1)2 is an integer which is determined by the number of symmetry planes N that the flow field possesses. For Couette and open-channel flow there are no planes of symmetry and a = 1; for Poiseuille flow there is one plane of symmetry and a = 4.


Sign in / Sign up

Export Citation Format

Share Document