scholarly journals Operational Characterization of Infinite-Dimensional Quantum Resources

2021 ◽  
Vol 127 (25) ◽  
Author(s):  
Erkka Haapasalo ◽  
Tristan Kraft ◽  
Juha-Pekka Pellonpää ◽  
Roope Uola
Keyword(s):  
1992 ◽  
Vol 128 ◽  
pp. 65-93 ◽  
Author(s):  
Takeyuki Hida ◽  
Nobuaki Obata ◽  
Kimiaki Saitô

The theory of generalized white noise functionals (white noise calculus) initiated in [2] has been considerably developed in recent years, in particular, toward applications to quantum physics, see e.g. [5], [7] and references cited therein. On the other hand, since H. Yoshizawa [4], [23] discussed an infinite dimensional rotation group to broaden the scope of an investigation of Brownian motion, there have been some attempts to introduce an idea of group theory into the white noise calculus. For example, conformal invariance of Brownian motion with multidimensional parameter space [6], variational calculus of white noise functionals [14], characterization of the Levy Laplacian [17] and so on.


Author(s):  
Omar Besbes ◽  
Francisco Castro ◽  
Ilan Lobel

We consider the pricing problem faced by a revenue-maximizing platform matching price-sensitive customers to flexible supply units within a geographic area. This can be interpreted as the problem faced in the short term by a ride-hailing platform. We propose a two-dimensional framework in which a platform selects prices for different locations and drivers respond by choosing where to relocate, in equilibrium, based on prices, travel costs, and driver congestion levels. The platform’s problem is an infinite-dimensional optimization problem with equilibrium constraints. We elucidate structural properties of supply equilibria and the corresponding utilities that emerge and establish a form of spatial decomposition, which allows us to localize the analysis to regions of movement. In turn, uncovering an appropriate knapsack structure to the platform’s problem, we establish a crisp local characterization of the optimal prices and the corresponding supply response. In the optimal solution, the platform applies different treatments to different locations. In some locations, prices are set so that supply and demand are perfectly matched; overcongestion is induced in other locations, and some less profitable locations are indirectly priced out. To obtain insights on the global structure of an optimal solution, we derive in quasi-closed form the optimal solution for a family of models characterized by a demand shock. The optimal solution, although better balancing supply and demand around the shock, quite interestingly also ends up inducing movement away from it. This paper was accepted by David Simchi-Levi, optimization.


2018 ◽  
Vol 62 (3) ◽  
pp. 491-507 ◽  
Author(s):  
Armando W. Gutiérrez

AbstractThe notion of metric compactification was introduced by Gromov and later rediscovered by Rieffel. It has been mainly studied on proper geodesic metric spaces. We present here a generalization of the metric compactification that can be applied to infinite-dimensional Banach spaces. Thereafter we give a complete description of the metric compactification of infinite-dimensional $\ell _{p}$ spaces for all $1\leqslant p<\infty$. We also give a full characterization of the metric compactification of infinite-dimensional Hilbert spaces.


1990 ◽  
Vol 118 ◽  
pp. 111-132 ◽  
Author(s):  
Nobuaki Obata

P. Lévy introduced, in his celebrated books [21] and [22], an infinite dimensional Laplacian called the Lévy Laplacian in connection with a number of interesting topics in variational calculus. One of the most significant features of the Lévy Laplacian is observed when it acts on the singular part of the second functional derivatives. For this reason the Lévy Laplacian has become important also in white noise analysis initiated by T. Hida [12]. On the other hand, as was pointed out by H. Yoshizawa [29], infinite dimensional rotation groups are profoundly concerned with the structure of white noise, and therefore, play essential roles in certain problems of stochastic calculus. Motivated by these works, we aim at developing harmonic analysis on infinite dimensional spaces by means of the Lévy Laplacian and infinite dimensional rotation groups.


2019 ◽  
Vol 19 (4) ◽  
pp. 797-811 ◽  
Author(s):  
Jean-Pierre Raymond

AbstractIn this paper, we consider control systems for which the underlying semigroup is analytic, and the resolvent of its generator is compact. In that case we give a characterization of the stabilizability of such control systems. When the stabilizability condition is satisfied the system is also stabilizable by finite-dimensional controls. We end the paper by giving an application of this result to the stabilizability of the Oseen equations with mixed boundary conditions.


1989 ◽  
Vol 12 (1) ◽  
pp. 175-191 ◽  
Author(s):  
Nikolaos S. Papageorgiou

The purpose of this paper is to establish some new properties of set valued measurable functions and of their sets of Integrable selectors and to use them to study convex integral functionals defined on Lebesgue-Bochner spaces. In this process we also obtain a characterization of separable dual Banach spaces using multifunctions and we present some generalizations of the classical “bang-bang” principle to infinite dimensional linear control systems with time dependent control constraints.


Sign in / Sign up

Export Citation Format

Share Document