Lifting of the Spin Degeneracy of Hole Subbands in a Surface Electric Field on Silicon

1984 ◽  
Vol 53 (5) ◽  
pp. 493-496 ◽  
Author(s):  
A. D. Wieck ◽  
E. Batke ◽  
D. Heitmann ◽  
J. P. Kotthaus ◽  
E. Bangert
1997 ◽  
Vol 473 ◽  
Author(s):  
Heng-Chih Lin ◽  
Edwin C. Kan ◽  
Toshiaki Yamanaka ◽  
Simon J. Fang ◽  
Kwame N. Eason ◽  
...  

ABSTRACTFor future CMOS GSI technology, Si/SiO2 interface micro-roughness becomes a non-negligible problem. Interface roughness causes fluctuations of the surface normal electric field, which, in turn, change the gate oxide Fowler-Nordheim tunneling behavior. In this research, we used a simple two-spheres model and a three-dimensional Laplace solver to simulate the electric field and the tunneling current in the oxide region. Our results show that both quantities are strong functions of roughness spatial wavelength, associated amplitude, and oxide thickness. We found that RMS roughness itself cannot fully characterize surface roughness and that roughness has a larger effect for thicker oxide in terms of surface electric field and tunneling behavior.


2021 ◽  
Vol 7 (5) ◽  
pp. eabe2892
Author(s):  
Dmitry Shcherbakov ◽  
Petr Stepanov ◽  
Shahriar Memaran ◽  
Yaxian Wang ◽  
Yan Xin ◽  
...  

Spin-orbit coupling (SOC) is a relativistic effect, where an electron moving in an electric field experiences an effective magnetic field in its rest frame. In crystals without inversion symmetry, it lifts the spin degeneracy and leads to many magnetic, spintronic, and topological phenomena and applications. In bulk materials, SOC strength is a constant. Here, we demonstrate SOC and intrinsic spin splitting in atomically thin InSe, which can be modified over a broad range. From quantum oscillations, we establish that the SOC parameter α is thickness dependent; it can be continuously modulated by an out-of-plane electric field, achieving intrinsic spin splitting tunable between 0 and 20 meV. Unexpectedly, α could be enhanced by an order of magnitude in some devices, suggesting that SOC can be further manipulated. Our work highlights the extraordinary tunability of SOC in 2D materials, which can be harnessed for in operando spintronic and topological devices and applications.


2000 ◽  
Vol 73 (1-3) ◽  
pp. 230-234 ◽  
Author(s):  
M Ichimura ◽  
M Hirano ◽  
A Tada ◽  
E Arai ◽  
H Takamatsu ◽  
...  

2012 ◽  
Author(s):  
Haizhou Ren ◽  
Pengtao Wang ◽  
Haibin Huo ◽  
Mengyan Shen ◽  
Marina Ruths ◽  
...  

1995 ◽  
Vol 189 (1) ◽  
pp. 247-256 ◽  
Author(s):  
Yu. P. Rakovich ◽  
G. P. Yablonskii ◽  
A. A. Gladyshchuk ◽  
A. S. Smal

Sign in / Sign up

Export Citation Format

Share Document