Effects of surface electric field on SnO 2 room temperature gas sensors fabricated on nanospike substrates

2012 ◽  
Author(s):  
Haizhou Ren ◽  
Pengtao Wang ◽  
Haibin Huo ◽  
Mengyan Shen ◽  
Marina Ruths ◽  
...  
2013 ◽  
Vol 1617 ◽  
pp. 31-36 ◽  
Author(s):  
L. Zamora-Peredo ◽  
I. Cortes-Mestizo ◽  
L. García-Gonzáez ◽  
J. Hernández-Torres ◽  
T. Hernandez-Quiroz ◽  
...  

ABSTRACTIn this work we report on the characteristics of GaAs/AlGaAs heterostructures with a symmetric double two-dimensional electron gas (D-2DEG). Optical characterization was made by room temperature photoreflectance (PR) spectroscopy as well as electrical properties were determinated using the quantum Hall effect measurements at 2K. In order to study the surface effects on the conduction band profile, three samples with different GaAs cap layer thickness (25, 60 and 80 nm) were grown by the molecular beam epitaxy. Photoreflectance spectra at room temperature show the wide-period Franz-Keldysh oscillations between 1.42 and 1.70 eV originated by the surface electric field. The analysis of these oscillations shows that the surface electric field varies from 503 to 120 kV/cm whereas the thickness of the cap layer increases that was produced by the reduction of the depletion zone near the surface. Using QHE measurements we found that electron density increases if the surface electric field decreases.


1997 ◽  
Vol 473 ◽  
Author(s):  
Heng-Chih Lin ◽  
Edwin C. Kan ◽  
Toshiaki Yamanaka ◽  
Simon J. Fang ◽  
Kwame N. Eason ◽  
...  

ABSTRACTFor future CMOS GSI technology, Si/SiO2 interface micro-roughness becomes a non-negligible problem. Interface roughness causes fluctuations of the surface normal electric field, which, in turn, change the gate oxide Fowler-Nordheim tunneling behavior. In this research, we used a simple two-spheres model and a three-dimensional Laplace solver to simulate the electric field and the tunneling current in the oxide region. Our results show that both quantities are strong functions of roughness spatial wavelength, associated amplitude, and oxide thickness. We found that RMS roughness itself cannot fully characterize surface roughness and that roughness has a larger effect for thicker oxide in terms of surface electric field and tunneling behavior.


Nanoscale ◽  
2021 ◽  
Author(s):  
Soon-Hwan Kwon ◽  
Tae-Hyeon Kim ◽  
Sang-Min Kim ◽  
Semi Oh ◽  
Kyoung-Kook Kim

Nanostructured semiconducting metal oxides such as SnO2, ZnO, TiO2, and CuO have been widely used to fabricate high performance gas sensors. To improve the sensitivity and stability of gas sensors,...


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2123 ◽  
Author(s):  
Wenli Li ◽  
Yong Zhang ◽  
Xia Long ◽  
Juexian Cao ◽  
Xin Xin ◽  
...  

The unique properties of MoS2 nanosheets make them a promising candidate for high-performance room temperature gas detection. Herein, few-layer MoS2 nanosheets (FLMN) prepared via mechanical exfoliation are coated on a substrate with interdigital electrodes for room-temperature NO2 detection. Interestingly, compared with other NO2 gas sensors based on MoS2, FLMN gas sensors exhibit high responsivity for room-temperature NO2 detection, and NO2 is easily desorbed from the sensor surface with an ultrafast recovery behavior, with recovery times around 2 s. The high responsivity is related to the fact that the adsorbed NO2 can affect the electron states within the entire material, which is attributed to the very small thickness of the MoS2 nanosheets. First-principles calculations were carried out based on the density functional theory (DFT) to verify that the ultrafast recovery behavior arises from the weak van der Waals binding between NO2 and the MoS2 surface. Our work suggests that FLMN prepared via mechanical exfoliation have a great potential for fabricating high-performance NO2 gas sensors.


2015 ◽  
Vol 28 (5) ◽  
pp. 795-831 ◽  
Author(s):  
Jun Zhang ◽  
Xianghong Liu ◽  
Giovanni Neri ◽  
Nicola Pinna

Sign in / Sign up

Export Citation Format

Share Document