Electric-field-induced drift and deformation of spiral waves in an excitable medium

1992 ◽  
Vol 68 (2) ◽  
pp. 248-251 ◽  
Author(s):  
O. Steinbock ◽  
J. Schütze ◽  
S. C. Müller
1994 ◽  
Vol 04 (05) ◽  
pp. 1173-1182 ◽  
Author(s):  
P. COULLET ◽  
F. PLAZA

A mechanical analog of the chemical and biological excitable medium is proposed. In nematic liquid crystals, the Freedericksz transition induced by a rotating tilted electric field provides a simple example of such a mechanical excitable system. We study this transition, derive a Ginzburg-Landau model for it, and show that the excitable spiral wave can be produced from a retractable finger-like soliton in this context.


2019 ◽  
Vol 29 (05) ◽  
pp. 1950071
Author(s):  
Jinming Luo ◽  
Xingyong Zhang ◽  
Jun Tang

Complex-periodic spiral waves are investigated extensively in the oscillatory medium. In this paper, the linearly polarized electric field (LPEF) is employed to induce complex-periodic spiral waves in the excitable medium with abnormal dispersion. As the amplitude of LPEF is increased beyond a threshold, the simple-periodic spiral wave converts into an irregularly complex-periodic one, in which, the local dynamics exhibit several regular spikes followed by one missed spiking period. Furthermore, with the increase of the LPEF amplitude, the missed spiking period follows different numbers of regular spikes [so-called period-1 (P-1), period-2 (P-2), etc.], even a mix of different periods. Meanwhile, the wavelength of the spiral wave transits from a short to a longer one. The pure-periodic (from P-6 to P-2) spirals generally contain defect lines, across which the phase of local oscillation changes by [Formula: see text]. In contrast, there is no defect line in the mixed-periodic spiral waves. This finding indicates that the defect line is not a necessary feature for complex-periodic spiral waves. Moreover, three types of tip trajectories of pure-periodic spiral waves are identified depending on the periods. That is, the outward-petal meandering, the outward-petal meandering with slow modulation, and drifting tip motion, and the tip trajectories could be used to distinguish them from the complex-oscillatory spiral waves.


Author(s):  
Shreyas Punacha ◽  
Sebastian Berg ◽  
Anupama Sebastian ◽  
Valentin I. Krinski ◽  
Stefan Luther ◽  
...  

Rotating spiral waves of electrical activity in the heart can anchor to unexcitable tissue (an obstacle) and become stable pinned waves. A pinned rotating wave can be unpinned either by a local electrical stimulus applied close to the spiral core, or by an electric field pulse that excites the core of a pinned wave independently of its localization. The wave will be unpinned only when the pulse is delivered inside a narrow time interval called the unpinning window (UW) of the spiral. In experiments with cardiac monolayers, we found that other obstacles situated near the pinning centre of the spiral can facilitate unpinning. In numerical simulations, we found increasing or decreasing of the UW depending on the location, orientation and distance between the pinning centre and an obstacle. Our study indicates that multiple obstacles could contribute to unpinning in experiments with intact hearts.


2014 ◽  
Vol 140 (18) ◽  
pp. 184901 ◽  
Author(s):  
Bing-Wei Li ◽  
Mei-Chun Cai ◽  
Hong Zhang ◽  
Alexander V. Panfilov ◽  
Hans Dierckx

2021 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Irene Moroz ◽  
Balamurali Ramakrishnan ◽  
Anitha Karthikeyan ◽  
Prakash Duraisamy

Abstract A Morris-Lecar neuron model is considered with Electric and Magnetic field effects where the electric field is a time varying sinusoid and magnetic field is simulated using an exponential flux memristor. We have shown that the exposure to electric and magnetic fields have significant effects on the neurons and have exhibited complex oscillations. The neurons exhibit a frequency-locked state for the periodic electric field and different ratios of frequency locked states with respect to the electric field frequency is also presented. To show the impact of the electric and magnetic fields on network of neurons, we have constructed different types of network and have shown the network wave propagation phenomenon. Interestingly the nodes exposed to both electric and magnetic fields exhibit more stable spiral waves compared to the nodes exhibited only to the magnetic fields. Also, when the number of layers are increased the range of electric field frequency for which the layers exhibit spiral waves also increase. Finally the noise effects on the field affected neuron network are discussed and multilayer networks supress spiral waves for a very low noise variance compared against the single layer network.


2002 ◽  
Vol 65 (2) ◽  
Author(s):  
Vladimir S. Zykov ◽  
On-Uma Kheowan ◽  
Orapin Rangsiman ◽  
Stefan C. Müller

2017 ◽  
Vol 119 (5) ◽  
pp. 58002 ◽  
Author(s):  
Yu Deng ◽  
Bao Yu Liu ◽  
Tong Wu ◽  
Yan Yan Shangguan ◽  
Jun Ma ◽  
...  

2012 ◽  
Vol 86 (1) ◽  
Author(s):  
Mei-chun Cai ◽  
Jun-ting Pan ◽  
Hong Zhang
Keyword(s):  

2005 ◽  
Vol 69 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Jing-Hua Xiao ◽  
Gang Hu ◽  
Hong Zhang ◽  
Bambi Hu

ChemPhysChem ◽  
2001 ◽  
Vol 2 (10) ◽  
pp. 613-616 ◽  
Author(s):  
Michael Seipel ◽  
Matthias Zierhut ◽  
Arno F. Münster

Sign in / Sign up

Export Citation Format

Share Document