scholarly journals Excess conductance of superconductor-semiconductor interfaces due to phase conjugation between electrons and holes

1992 ◽  
Vol 69 (3) ◽  
pp. 510-513 ◽  
Author(s):  
B. J. van Wees ◽  
P. de Vries ◽  
P. Magnée ◽  
T. M. Klapwijk
Author(s):  
Z. Liliental-Weber ◽  
C. Nelson ◽  
R. Ludeke ◽  
R. Gronsky ◽  
J. Washburn

The properties of metal/semiconductor interfaces have received considerable attention over the past few years, and the Al/GaAs system is of special interest because of its potential use in high-speed logic integrated optics, and microwave applications. For such materials a detailed knowledge of the geometric and electronic structure of the interface is fundamental to an understanding of the electrical properties of the contact. It is well known that the properties of Schottky contacts are established within a few atomic layers of the deposited metal. Therefore surface contamination can play a significant role. A method for fabricating contamination-free interfaces is absolutely necessary for reproducible properties, and molecularbeam epitaxy (MBE) offers such advantages for in-situ metal deposition under UHV conditions


Author(s):  
S. J. Pennycook

Using a high-angle annular detector on a high-resolution STEM it is possible to form incoherent images of a crystal lattice characterized by strong atomic number or Z contrast. Figure 1 shows an epitaxial Ge film on Si(100) grown by oxidation of Ge-implanted Si. The image was obtained using a VG Microscopes' HB501 STEM equipped with an ultrahigh resolution polepiece (Cs ∽1.2 mm, demonstrated probe FWHM intensity ∽0.22 nm). In both crystals the lattice is resolved but that of Ge shows much brighter allowing the interface to be located exactly and interface steps to be resolved (arrowed). The interface was indistinguishable in the phase-contrast STEM image from the same region, and even at higher resolution the location of the interface is complex. Figure 2 shows a thin region of an MBE-grown ultrathin super-lattice (Si8Ge2)100. The expected compositional modulation would show as one bright row of dots from the 2 Ge monolayers separated by 4 rows of lighter Si columns. The image shows clearly that strain-induced interdiffusion has occurred on the monolayer scale.


1983 ◽  
Vol 44 (C2) ◽  
pp. C2-19-C2-25
Author(s):  
M. C. Gower ◽  
R. G. Caro

Sign in / Sign up

Export Citation Format

Share Document