An atomic-resolution microscope study of Al contracts on GaAs

Author(s):  
Z. Liliental-Weber ◽  
C. Nelson ◽  
R. Ludeke ◽  
R. Gronsky ◽  
J. Washburn

The properties of metal/semiconductor interfaces have received considerable attention over the past few years, and the Al/GaAs system is of special interest because of its potential use in high-speed logic integrated optics, and microwave applications. For such materials a detailed knowledge of the geometric and electronic structure of the interface is fundamental to an understanding of the electrical properties of the contact. It is well known that the properties of Schottky contacts are established within a few atomic layers of the deposited metal. Therefore surface contamination can play a significant role. A method for fabricating contamination-free interfaces is absolutely necessary for reproducible properties, and molecularbeam epitaxy (MBE) offers such advantages for in-situ metal deposition under UHV conditions

2020 ◽  
Author(s):  
Chrysoula Voulgari

<p>Conventional all granular trackbed has been in use around the world for many years, presenting good results although requiring a certain level of ongoing maintenance. Increasing traffic loads and volumes and particularly the introduction of high-speed trains in the last few decades, have resulted in the need for new approaches. To reduce train load-induced stresses in the track subgrade, one approach that has been introduced is the use of a Hot Mix Asphalt (HMA) layer as a partial or full replacement of the granular sub-ballast.</p><p>During the past few decades the use of HMA as a sub-ballast layer within the track structure has steadily increased until it has become standard practice in many countries around the world (USA, Japan, Germany, Italy etc.). The HMA mix is designed similarly to the base layer of highway pavements. Specifically, it is designed to be a medium modulus, flexible, low voids, fatigue resistant layer that will accommodate high tensile strains without cracking .</p><p>This paper provides a review of the potential use of an asphalt layer to replace the granular sub-ballast during the railway trackbed design.  A literature review of the use of asphalt in trackbed construction and a parametric analysis have been carried out to compare traditional ‘all granular’ and more recent asphalt layer solutions for different subgrade stiffnesses. </p><p>Results indicate various advantages of the use of asphalt in the trackbed; improving trackbed performance and decreasing the overall cost and environmental impact.</p>


Author(s):  
Jerry Woodall

Over the past decade III-V materials have been successfully commercialized for optoelectronic applications requiring LED's lasers and photodetectors. The success of these materials for these applications is based primarily on the use of heterojunction structures formed by epitaxial techniques in a manufacturing environment. More recently, III-V materials, notably GaAs, have been studied in the R&D environment as possible materials for use in high speed devices and circuits including VLSI. Even though the use of epitaxially grown structures has played a significant role in the success of laboratory scale devices and circuits, there are still several technology problems which will need to be solved before affordable manufacturing can be done. Two important challenges facing the commercialization of these materials for this application are metal contacts, and dielectrics for control and passivation. Both of these challenges are rooted in a common problem. Stated simply, the problem is that at nearly all GaAs/metal or dielectric interfaces the Fermi level is pinned near mid-gap.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
Jerrold L. Abraham

Inorganic particulate material of diverse types is present in the ambient and occupational environment, and exposure to such materials is a well recognized cause of some lung disease. To investigate the interaction of inhaled inorganic particulates with the lung it is necessary to obtain quantitative information on the particulate burden of lung tissue in a wide variety of situations. The vast majority of diagnostic and experimental tissue samples (biopsies and autopsies) are fixed with formaldehyde solutions, dehydrated with organic solvents and embedded in paraffin wax. Over the past 16 years, I have attempted to obtain maximal analytical use of such tissue with minimal preparative steps. Unique diagnostic and research data result from both qualitative and quantitative analyses of sections. Most of the data has been related to inhaled inorganic particulates in lungs, but the basic methods are applicable to any tissues. The preparations are primarily designed for SEM use, but they are stable for storage and transport to other laboratories and several other instruments (e.g., for SIMS techniques).


Author(s):  
William Krakow

In the past few years on-line digital television frame store devices coupled to computers have been employed to attempt to measure the microscope parameters of defocus and astigmatism. The ultimate goal of such tasks is to fully adjust the operating parameters of the microscope and obtain an optimum image for viewing in terms of its information content. The initial approach to this problem, for high resolution TEM imaging, was to obtain the power spectrum from the Fourier transform of an image, find the contrast transfer function oscillation maxima, and subsequently correct the image. This technique requires a fast computer, a direct memory access device and even an array processor to accomplish these tasks on limited size arrays in a few seconds per image. It is not clear that the power spectrum could be used for more than defocus correction since the correction of astigmatism is a formidable problem of pattern recognition.


Author(s):  
Peter H. Wiebe ◽  
Ann Bucklin ◽  
Mark Benfield

This chapter reviews traditional and new zooplankton sampling techniques, sample preservation, and sample analysis, and provides the sources where in-depth discussion of these topics is addressed. The net systems that have been developed over the past 100+ years, many of which are still in use today, can be categorized into eight groups: non-opening/closing nets, simple opening/closing nets, high-speed samplers, neuston samplers, planktobenthos plankton nets, closing cod-end samplers, multiple net systems, and moored plankton collection systems. Methods of sample preservation include preservation for sample enumeration and taxonomic morphological analysis, and preservation of samples for genetic analysis. Methods of analysis of zooplankton samples include determination of biomass, taxonomic composition, and size by traditional methods; and genetic analysis of zooplankton samples.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4705
Author(s):  
Julian Lich ◽  
Tino Wollmann ◽  
Angelos Filippatos ◽  
Maik Gude ◽  
Juergen Czarske ◽  
...  

Due to their lightweight properties, fiber-reinforced composites are well suited for large and fast rotating structures, such as fan blades in turbomachines. To investigate rotor safety and performance, in situ measurements of the structural dynamic behaviour must be performed during rotating conditions. An approach to measuring spatially resolved vibration responses of a rotating structure with a non-contact, non-rotating sensor is investigated here. The resulting spectra can be assigned to specific locations on the structure and have similar properties to the spectra measured with co-rotating sensors, such as strain gauges. The sampling frequency is increased by performing consecutive measurements with a constant excitation function and varying time delays. The method allows for a paradigm shift to unambiguous identification of natural frequencies and mode shapes with arbitrary rotor shapes and excitation functions without the need for co-rotating sensors. Deflection measurements on a glass fiber-reinforced polymer disk were performed with a diffraction grating-based sensor system at 40 measurement points with an uncertainty below 15 μrad and a commercial triangulation sensor at 200 measurement points at surface speeds up to 300 m/s. A rotation-induced increase of two natural frequencies was measured, and their mode shapes were derived at the corresponding rotational speeds. A strain gauge was used for validation.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 287
Author(s):  
Ye Lin Park ◽  
Kiwon Park ◽  
Jae Min Cha

Over the past decades, a number of bone tissue engineering (BTE) approaches have been developed to address substantial challenges in the management of critical size bone defects. Although the majority of BTE strategies developed in the laboratory have been limited due to lack of clinical relevance in translation, primary prerequisites for the construction of vascularized functional bone grafts have gained confidence owing to the accumulated knowledge of the osteogenic, osteoinductive, and osteoconductive properties of mesenchymal stem cells and bone-relevant biomaterials that reflect bone-healing mechanisms. In this review, we summarize the current knowledge of bone-healing mechanisms focusing on the details that should be embodied in the development of vascularized BTE, and discuss promising strategies based on 3D-bioprinting technologies that efficiently coalesce the abovementioned main features in bone-healing systems, which comprehensively interact during the bone regeneration processes.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1409
Author(s):  
Hamdhani Hamdhani ◽  
Drew E. Eppehimer ◽  
David Walker ◽  
Michael T. Bogan

Chlorophyll-a measurements are an important factor in the water quality monitoring of surface waters, especially for determining the trophic status and ecosystem management. However, a collection of field samples for extractive analysis in a laboratory may not fully represent the field conditions. Handheld fluorometers that can measure chlorophyll-a in situ are available, but their performance in waters with a variety of potential light-interfering substances has not yet been tested. We tested a handheld fluorometer for sensitivity to ambient light and turbidity and compared these findings with EPA Method 445.0 using water samples obtained from two urban lakes in Tucson, Arizona, USA. Our results suggested that the probe was not sensitive to ambient light and performed well at low chlorophyll-a concentrations (<25 µg/L) across a range of turbidity levels (50–70 NTU). However, the performance was lower when the chlorophyll-a concentrations were >25 µg/L and turbidity levels were <50 NTU. To account for this discrepancy, we developed a calibration equation to use for this handheld fluorometer when field monitoring for potential harmful algal blooms in water bodies.


Author(s):  
Gabriele Stephan ◽  
Niklas Ravn-Boess ◽  
Dimitris G Placantonakis

Abstract Members of the adhesion family of G protein-coupled receptors (GPCRs) have received attention for their roles in health and disease, including cancer. Over the past decade, several members of the family have been implicated in the pathogenesis of glioblastoma. Here, we discuss the basic biology of adhesion GPCRs and review in detail specific members of the receptor family with known functions in glioblastoma. Finally, we discuss the potential use of adhesion GPCRs as novel treatment targets in neuro-oncology.


Sign in / Sign up

Export Citation Format

Share Document