Nonlinear Diffusion of the Magnetic Field in Weakly Ionized Plasmas

1998 ◽  
Vol 81 (22) ◽  
pp. 4871-4874 ◽  
Author(s):  
A. I. Smolyakov ◽  
I. Khabibrakhmanov

The problem of the stability of static, highly conducting, fully ionized plasmas is investigated by means of an energy principle developed from one introduced by Lundquist. The derivation of the principle and the conditions under which it applies are given. The method is applied to find complete stability criteria for two types of equilibrium situations. The first concerns plasmas which are completely separated from the magnetic field by an interface. The second is the general axisymmetric system.


1999 ◽  
Vol 61 (1) ◽  
pp. 51-63 ◽  
Author(s):  
M. ROSENBERG ◽  
V. W. CHOW

A kinetic analysis of the electrostatic dust cyclotron instability in a weakly ionized collisional dusty plasma is presented. In a plasma with negatively charged dust and a current along the magnetic field B, it is found that the instability can be excited by ions drifting along B. The effect of dust–neutral collisions is stabilizing, while the effect of ion–neutral collisions can be destabilizing. Possible applications to laboratory environments are discussed.


2008 ◽  
Vol 74 (3) ◽  
pp. 319-326 ◽  
Author(s):  
A. R. NIKNAM ◽  
B. SHOKRI

AbstractThe filamentation of the resistive instability in a weakly ionized quasi-neutral current-carrying plasma in the diffusion frequency region in the nonlinear regime is investigated. By using the magnetohydrodynamics equations and Ampere's law and assuming that the plasma is non-isothermal and inhomogeneous, the evolution of the magnetic field diffusion into the plasma is described by the Lienard nonlinear differential equation. Furthermore, it is shown that the departure of the profiles of the magnetic field and electron density variation from a sinusoidal shape in the nonlinear regime and a transverse filamentation and density steepening can occur in the static limit. Also, it is shown that the shape of the transverse filamentation can vary in this regime depending on the gradient of the magnetic field.


1967 ◽  
Vol 31 ◽  
pp. 375-380
Author(s):  
H. C. van de Hulst

Various methods of observing the galactic magnetic field are reviewed, and their results summarized. There is fair agreement about the direction of the magnetic field in the solar neighbourhood:l= 50° to 80°; the strength of the field in the disk is of the order of 10-5gauss.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


Sign in / Sign up

Export Citation Format

Share Document