scholarly journals Dissipation of the Proton Electrochemical Potential in Intact Chloroplasts (II. The pH Gradient Monitored by Cytochrome f Reduction Kinetics)

1993 ◽  
Vol 101 (1) ◽  
pp. 89-96 ◽  
Author(s):  
J. N. Nishio ◽  
J. Whitmarsh
1978 ◽  
Vol 170 (3) ◽  
pp. 511-522 ◽  
Author(s):  
David G. Nicholls

A method is described for the preparation of ‘free’ and ‘synaptosomal’ brain mitochondria from fractions of guinea-pig cerebral cortex respectively depleted and enriched in synaptosomes. Both preparations of mitochondria have a low membrane H+conductance, a high capacity to phosphorylate ADP, and a capacity to accumulate Ca2+ at rates limited by the activity of the respiratory chain. Ca2+ transport by ‘free’ brain mitochondria is compared with that of heart mitochondria. The Ca2+ conductance of ‘free’ brain mitochondria was at least 20 times that for rat heart mitochondria. Ca2+ uptake by brain mitochondria increased the pH gradient and decreased membrane potential, whereas little change occurred during the much slower uptake by heart mitochondria. In the presence of ionophore A23187, dissipative Ca2+ cycling decreased the H+ electrochemical potential gradient of brain mitochondria from 190 to 60mV, but caused only a slight decrease with heart mitochondria, although the ionophore lowered the pH gradient and increased membrane potential. The Ca2+ conductance of ‘free’ brain mitochondria is distinctive in showing a hyperbolic dependency on free Ca2+concentration. In the presence of Ruthenium Red, a rapid Na+ -dependent Ca2+ efflux occurs. The H+ electrochemical potential gradient is maintained during this efflux, and membrane potential increases, with both ‘free’ brain and heart mitochondria. The Na+ requirement for Ca2+ efflux appears not to be related to the high Na+/H+ exchange activity but may represent a direct exchange of Na+ for Ca2+.


1983 ◽  
Vol 217 (1209) ◽  
pp. 405-416 ◽  

An apparatus is described that allows simultaneous measurement of photosynthetic O 2 evolution, chlorophyll fluorescence and the trans­thylakoid pH gradient (∆pH) in isolated chloroplasts irradiated with light sufficient to saturate photosynthesis. In intact chloroplasts, quenching of chlorophyll fluorescence due to both oxidation of the primary electron acceptor of photosystem II (Q) and formation of ∆pH was seen. The relative proportions of the two kinds of quenching varied in response to ( a ) the light intensity, ( b ) the presence of phosphoglycerate and ( c ) whether or not the chloroplasts were in the induction period or in a period of linear photosynthetic O 2 evolution. In broken chloroplasts reconstituted for CO 2 fixation, transient changes in the rates of O 2 evolution, ∆pH, the redox state of Q and chlorophyll fluorescence were observed as a result of changes in ( a ) the availability of electron acceptor as determined by the additions of NADP and phosphoglycerate and ( b ) the ratio of ATP to ADP, as manipulated by addition of ribose 5-phosphate. The changes in chlorophyll fluorescence in this system could be manipulated to show a pattern very similar to that observed in leaves.


2010 ◽  
Vol 31 (2) ◽  
pp. 205-212
Author(s):  
Hong WANG ◽  
Yong YANG ◽  
Baoshan WU ◽  
Jian XU ◽  
Hulin WANG ◽  
...  

2019 ◽  
Vol 16 (10) ◽  
pp. 940-950 ◽  
Author(s):  
Jiandong Yu ◽  
Zhi Chen ◽  
Yan-zhi Yin ◽  
Chaoyuan Tang ◽  
Enying Hu ◽  
...  

Background: In this study, a liposomal gel based on a pH-gradient method was used to increase the skin-layer retention of monocrotaline (MCT) for topical administration. Methods: Using the Box-Behnken design, different formulations were designed to form liposome suspensions with optimal encapsulation efficiency (EE%) and stability factor (KE). In order to keep MCT in liposomes and accumulate in skin slowly and selectively, MCT liposome suspensions were engineered into gels. Results: A pH-gradient method was used to prepare liposome suspensions. The optimal formulation of liposome suspensions (encapsulation efficiency: 83.10 ± 0.21%) was as follows: MCT 12 mg, soybean phosphatidyl choline (sbPC) 200 mg, cholesterol (CH) 41 mg, vitamin E (VE) 5 mg, and citric acid buffer solution (CBS) 4.0 10 mL (pH 7.0). The final formulation of liposomal gels consisted of 32 mL liposome suspensions, 4.76 mL deionized water, 0.40 g Carbopol-940, 1.6 g glycerol, 0.04 g methylparaben, and a suitable amount of triethanolamine for pH value adjustment. The results of in vitro drug release showed that MCT in liposomal gels could be released in 12 h constantly in physiological saline as a Ritger-Peppas model. Compared with plain MCT in gel form, liposomal MCT in gel had higher skin retention in vitro. Conclusion: In this study, liposomal gels were formed for greater skin retention of MCT. It is potentially beneficial for reducing toxicities of MCT by topical administration with liposomal gel.


Author(s):  
K. Ando ◽  
E. Saitoh

This chapter introduces the concept of incoherent spin current. A diffusive spin current can be driven by spatial inhomogeneous spin density. Such spin flow is formulated using the spin diffusion equation with spin-dependent electrochemical potential. The chapter also proposes a solution to the problem known as the conductivity mismatch problem of spin injection into a semiconductor. A way to overcome the problem is by using a ferromagnetic semiconductor as a spin source; another is to insert a spin-dependent interface resistance at a metal–semiconductor interface.


Sign in / Sign up

Export Citation Format

Share Document