scholarly journals Phylogenetic Analyses Identify 10 Classes of the Protein Disulfide Isomerase Family in Plants, Including Single-Domain Protein Disulfide Isomerase-Related Proteins

2005 ◽  
Vol 137 (2) ◽  
pp. 762-778 ◽  
Author(s):  
Norma L. Houston ◽  
Chuanzhu Fan ◽  
(Jenny) Qiu-Yun Xiang ◽  
Jan-Michael Schulze ◽  
Rudolf Jung ◽  
...  
2007 ◽  
Vol 282 (46) ◽  
pp. 33859-33867 ◽  
Author(s):  
Johannes Haugstetter ◽  
Michael Andreas Maurer ◽  
Thomas Blicher ◽  
Martin Pagac ◽  
Gerhard Wider ◽  
...  

Disulfide bond formation in the endoplasmic reticulum is catalyzed by enzymes of the protein disulfide-isomerase family that harbor one or more thioredoxin-like domains. We recently discovered the transmembrane protein TMX3, a thiol-disulfide oxidoreductase of the protein disulfide-isomerase family. Here, we show that the endoplasmic reticulum-luminal region of TMX3 contains three thioredoxin-like domains, an N-terminal redox-active domain (named a) followed by two enzymatically inactive domains (b and b′). Using the recombinantly expressed TMX3 domain constructs a, ab, and abb′, we compared structural stability and enzymatic properties. By structural and biophysical methods, we demonstrate that the reduced a domain has features typical of a globular folded domain that is, however, greatly destabilized upon oxidization. Importantly, interdomain stabilization by the b domain renders the a domain more resistant toward chemical denaturation and proteolysis in both the oxidized and reduced form. In combination with molecular modeling studies of TMX3 abb′, the experimental results provide a new understanding of the relationship between the multidomain structure of TMX3 and its function as a redox enzyme. Overall, the data indicate that in addition to their role as substrate and co-factor binding domains, redox-inactive thioredoxin-like domains also function in stabilizing neighboring redox-active domains.


Leukemia ◽  
2018 ◽  
Vol 33 (4) ◽  
pp. 1011-1022 ◽  
Author(s):  
Reeder M. Robinson ◽  
Leticia Reyes ◽  
Ravyn M. Duncan ◽  
Haiyan Bian ◽  
Allen B. Reitz ◽  
...  

1992 ◽  
Vol 12 (10) ◽  
pp. 4601-4611
Author(s):  
C Tachibana ◽  
T H Stevens

The product of the EUG1 gene of Saccharomyces cerevisiae is a soluble endoplasmic reticulum protein with homology to both the mammalian protein disulfide isomerase (PDI) and the yeast PDI homolog encoded by the essential PDI1 gene. Deletion or overexpression of EUG1 causes no growth defects under a variety of conditions. EUG1 mRNA and protein levels are dramatically increased in response to the accumulation of native or unglycosylated proteins in the endoplasmic reticulum. Overexpression of the EUG1 gene allows yeast cells to grow in the absence of the PDI1 gene product. Depletion of the PDI1 protein in Saccharomyces cerevisiae causes a soluble vacuolar glycoprotein to accumulate in its endoplasmic reticulum form, and this phenotype is only partially relieved by the overexpression of EUG1. Taken together, our results indicate that PDI1 and EUG1 encode functionally related proteins that are likely to be involved in interacting with nascent polypeptides in the yeast endoplasmic reticulum.


2008 ◽  
Vol 384 (3) ◽  
pp. 631-640 ◽  
Author(s):  
Elvira Vitu ◽  
Einav Gross ◽  
Harry M. Greenblatt ◽  
Carolyn S. Sevier ◽  
Chris A. Kaiser ◽  
...  

2004 ◽  
Vol 320 (2) ◽  
pp. 359-365 ◽  
Author(s):  
Taiji Kimura ◽  
Yasuhiro Hosoda ◽  
Yukiko Kitamura ◽  
Hideshi Nakamura ◽  
Tomohisa Horibe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document