single domain protein
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 17 (10) ◽  
pp. e1009502
Author(s):  
Vasilina Zayats ◽  
Agata P. Perlinska ◽  
Aleksandra I. Jarmolinska ◽  
Borys Jastrzebski ◽  
Stanislaw Dunin-Horkawicz ◽  
...  

While the slipknot topology in proteins has been known for over a decade, its evolutionary origin is still a mystery. We have identified a previously overlooked slipknot motif in a family of two-domain membrane transporters. Moreover, we found that these proteins are homologous to several families of unknotted membrane proteins. This allows us to directly investigate the evolution of the slipknot motif. Based on our comprehensive analysis of 17 distantly related protein families, we have found that slipknotted and unknotted proteins share a common structural motif. Furthermore, this motif is conserved on the sequential level as well. Our results suggest that, regardless of topology, the proteins we studied evolved from a common unknotted ancestor single domain protein. Our phylogenetic analysis suggests the presence of at least seven parallel evolutionary scenarios that led to the current diversity of proteins in question. The tools we have developed in the process can now be used to investigate the evolution of other repeated-domain proteins.


Author(s):  
Olga Bozovic ◽  
Jeannette Ruf ◽  
Claudio Zanobini ◽  
Brankica Jankovic ◽  
David Buhrke ◽  
...  

2021 ◽  
Vol 14 (14) ◽  
pp. 14-20
Author(s):  
Mahendra Thapa ◽  
Mark Rance

The coarse-grained protein modeling tool, Cabs-flex, is feely available online server; it is based on the CABS model in which each residue of a protein has been represented by four points. The server was used for the protein Calbindin D9k in it’s doubly calcium loaded state: small and single domain protein of the EF-hand family. Twelve representative structures, in all-atom format corresponding to each cluster, were also downloaded along with trajectories, ready-made plots, images, video, data files of Cα RMSD, atomic fluctuation and GDT_TS. In the present study, simulated Cα atomic fluctuations for residues of the protein was compared with the experimental results and also correlated with the respective Cα RMSD and GDT_TS.


2021 ◽  
Vol 125 (7) ◽  
pp. 1799-1805
Author(s):  
Pavel I. Zhuravlev ◽  
Michael Hinczewski ◽  
D. Thirumalai

2020 ◽  
Vol 22 (1) ◽  
pp. 55
Author(s):  
Yue Ding ◽  
Dimitra Apostolidou ◽  
Piotr Marszalek

NanoLuc is a bioluminescent protein recently engineered for applications in molecular imaging and cellular reporter assays. Compared to other bioluminescent proteins used for these applications, like Firefly Luciferase and Renilla Luciferase, it is ~150 times brighter, more thermally stable, and smaller. Yet, no information is known with regards to its mechanical properties, which could introduce a new set of applications for this unique protein, such as a novel biomaterial or as a substrate for protein activity/refolding assays. Here, we generated a synthetic NanoLuc derivative protein that consists of three connected NanoLuc proteins flanked by two human titin I91 domains on each side and present our mechanical studies at the single molecule level by performing Single Molecule Force Spectroscopy (SMFS) measurements. Our results show each NanoLuc repeat in the derivative behaves as a single domain protein, with a single unfolding event occurring on average when approximately 72 pN is applied to the protein. Additionally, we performed cyclic measurements, where the forces applied to a single protein were cyclically raised then lowered to allow the protein the opportunity to refold: we observed the protein was able to refold to its correct structure after mechanical denaturation only 16.9% of the time, while another 26.9% of the time there was evidence of protein misfolding to a potentially non-functional conformation. These results show that NanoLuc is a mechanically moderately weak protein that is unable to robustly refold itself correctly when stretch-denatured, which makes it an attractive model for future protein folding and misfolding studies.


2020 ◽  
Author(s):  
Pavel I. Zhuravlev ◽  
Michael Hinczewski ◽  
D. Thirumalai

AbstractDeviations from linearity in the dependence of the logarithm of protein unfolding rates, log ku(f), as a function of mechanical force, f, measurable in single molecule experiments, can arise for many reasons. In particular, upward curvature in log ku(f) as a function of f implies that the underlying energy landscape must be multidimensional with the possibility that unfolding ensues by parallel pathways. Here, simulations using the SOP-SC model of a wild type β-sandwich protein and several mutants, with immunoglobulin folds, show upward curvature in the unfolding kinetics. There are substantial changes in the structures of the transition state ensembles as force is increased, signaling a switch in the unfolding pathways. Our results, when combined with previous theoretical and experimental studies, show that parallel unfolding of structurally unrelated single domain proteins can be determined from the dependence of log ku(f) as a function of force (or log ku[C] where [C] is the denaturant concentration).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sara Linse ◽  
Eva Thulin ◽  
Hanna Nilsson ◽  
Johannes Stigler

AbstractProtein folding is governed by non-covalent interactions under the benefits and constraints of the covalent linkage of the backbone chain. In the current work we investigate the influence of loop length variation on the free energies of folding and ligand binding in a small globular single-domain protein containing two EF-hand subdomains—calbindin D9k. We introduce a linker extension between the subdomains and vary its length between 1 to 16 glycine residues. We find a close to linear relationship between the linker length and the free energy of folding of the Ca2+-free protein. In contrast, the linker length has only a marginal effect on the Ca2+ affinity and cooperativity. The variant with a single-glycine extension displays slightly increased Ca2+ affinity, suggesting that the slightly extended linker allows optimized packing of the Ca2+-bound state. For the extreme case of disconnected subdomains, Ca2+ binding becomes coupled to folding and assembly. Still, a high affinity between the EF-hands causes the non-covalent pair to retain a relatively high apparent Ca2+ affinity. Our results imply that loop length variation could be an evolutionary option for modulating properties such as protein stability and turnover without compromising the energetics of the specific function of the protein.


2020 ◽  
Author(s):  
Ashmita Mainali ◽  
Sadikshya Rijal ◽  
Hitesh Kumar Bhattarai

Abstract Background The DNA end joining protein, Ku, is essential in Non-Homologous End Joining in prokaryotes and eukaryotes. It was first discovered in eukaryotes and later by PSI blast, was discovered in prokaryotes. While Ku in eukaryotes is often a multi domain protein functioning in DNA repair of physiological and pathological DNA double stranded breaks, Ku in prokaryotes is a single domain protein functioning in pathological DNA repair in spores or late stationary phase. In this paper we have attempted to systematically search for Ku protein in different phyla of bacteria and archaea as well as in different kingdoms of eukarya. Result From our search of 116 sequenced bacterial genomes, only 25 genomes yielded at least one Ku sequence. From a comprehensive search of all NCBI archaeal genomes, we received a positive hit in 7 specific archaea that possessed Ku. In eukarya, we found Ku protein in 27 out of 59 species. Since the entire genome of all eukaryotic species is not fully sequenced this number could go up. We then drew a phylogenetic maximum likelihood tree to determine the ancestral relationship between Ku70 and Ku80 in eukaryotes and Ku in prokaryotes. Out tree revealed a common node for some archaeal Ku, Ku70 and Ku80. Conclusion This led us to hypothesize that Ku from archaea transferred through horizontal gene transfer onto neozoa and then duplicated to form Ku70 and Ku80. Additionally, we analyzed the domains of the different eukaryotic species to demonstrate that fusion, fission, terminal addition, terminal deletion, single domain loss, single domain emergence events during evolution.


2020 ◽  
Vol 21 (18) ◽  
pp. 6901
Author(s):  
Savita Devi ◽  
Christian Stehlik ◽  
Andrea Dorfleutner

Inflammasomes are protein scaffolds required for the activation of caspase-1 and the subsequent release of interleukin (IL)-1β, IL-18, and danger signals, as well as the induction of pyroptotic cell death to restore homeostasis following infection and sterile tissue damage. However, excessive inflammasome activation also causes detrimental inflammatory disease. Therefore, extensive control mechanisms are necessary to prevent improper inflammasome responses and inflammatory disease. Inflammasomes are assembled by sequential nucleated polymerization of Pyrin domain (PYD) and caspase recruitment domain (CARD)-containing inflammasome components. Once polymerization is nucleated, this process proceeds in a self-perpetuating manner and represents a point of no return. Therefore, regulation of this key step is crucial for a controlled inflammasome response. Here, we provide an update on two single domain protein families containing either a PYD or a CARD, the PYD-only proteins (POPs) and CARD-only proteins (COPs), respectively. Their structure allows them to occupy and block access to key protein–protein interaction domains necessary for inflammasome assembly, thereby regulating the threshold of these nucleated polymerization events, and consequently, the inflammatory host response.


Author(s):  
Sarah Wazir ◽  
Mirko M. Maksimainen ◽  
Lari Lehtiö

MacroD2 is one of the three human macrodomain proteins characterized by their protein-linked mono-ADP-ribosyl-hydrolyzing activity. MacroD2 is a single-domain protein that contains a deep ADP-ribose-binding groove. In this study, new crystallization conditions for MacroD2 were found and three crystal structures of human MacroD2 in the apo state were solved in space groups P41212, P43212 and P43, and refined at 1.75, 1.90 and 1.70 Å resolution, respectively. Structural comparison of the apo crystal structures with the previously reported crystal structure of MacroD2 in complex with ADP-ribose revealed conformational changes in the side chains of Val101, Ile189 and Phe224 induced by the binding of ADP-ribose in the active site. These conformational variations may potentially facilitate design efforts of a MacroD2 inhibitor.


Sign in / Sign up

Export Citation Format

Share Document