scholarly journals Physical Association of Starch Biosynthetic Enzymes with Starch Granules of Maize Endosperm (Granule-Associated Forms of Starch Synthase I and Starch Branching Enzyme II)

1996 ◽  
Vol 111 (3) ◽  
pp. 821-829 ◽  
Author(s):  
C. Mu-Forster ◽  
R. Huang ◽  
J. R. Powers ◽  
R. W. Harriman ◽  
M. Knight ◽  
...  
1993 ◽  
Vol 4 (1) ◽  
pp. 191-198 ◽  
Author(s):  
Kay Denyer ◽  
Christopher Sidebottom ◽  
Christopher M. Hylton ◽  
Alison M. Smith

2012 ◽  
Vol 448 (3) ◽  
pp. 373-387 ◽  
Author(s):  
Fushan Liu ◽  
Nadya Romanova ◽  
Elizabeth A. Lee ◽  
Regina Ahmed ◽  
Martin Evans ◽  
...  

The sugary-2 mutation in maize (Zea mays L.) is a result of the loss of catalytic activity of the endosperm-specific SS (starch synthase) IIa isoform causing major alterations to amylopectin architecture. The present study reports a biochemical and molecular analysis of an allelic variant of the sugary-2 mutation expressing a catalytically inactive form of SSIIa and sheds new light on its central role in protein–protein interactions and determination of the starch granule proteome. The mutant SSIIa revealed two amino acid substitutions, one being a highly conserved residue (Gly522→Arg) responsible for the loss of catalytic activity and the inability of the mutant SSIIa to bind to starch. Analysis of protein–protein interactions in sugary-2 amyloplasts revealed the same trimeric assembly of soluble SSI, SSIIa and SBE (starch-branching enzyme) IIb found in wild-type amyloplasts, but with greatly reduced activities of SSI and SBEIIb. Chemical cross-linking studies demonstrated that SSIIa is at the core of the complex, interacting with SSI and SBEIIb, which do not interact directly with each other. The sugary-2 mutant starch granules were devoid of amylopectin-synthesizing enzymes, despite the fact that the respective affinities of SSI and SBEIIb from sugary-2 for amylopectin were the same as observed in wild-type. The data support a model whereby granule-bound proteins involved in amylopectin synthesis are partitioned into the starch granule as a result of their association within protein complexes, and that SSIIa plays a crucial role in trafficking SSI and SBEIIb into the granule matrix.


2017 ◽  
Vol 176 (1) ◽  
pp. 582-595 ◽  
Author(s):  
Juan Wang ◽  
Pan Hu ◽  
Lingshang Lin ◽  
Zichun Chen ◽  
Qiaoquan Liu ◽  
...  

2007 ◽  
Vol 34 (5) ◽  
pp. 431 ◽  
Author(s):  
Behjat Kosar-Hashemi ◽  
Zhongyi Li ◽  
Oscar Larroque ◽  
Ahmed Regina ◽  
Makoto Yamamori ◽  
...  

A line of wheat (Triticum aestivum L.), sgp-1, that does not express starch synthase II (SSII, also known as SGP-1) has previously been reported. In this study, F1 derived doubled haploid lines with homozygous wild type or mutant alleles for SGP-1 genes were identified from a cross between the original mutant and a wild type Australian cultivar. Analysis of the starch granules showed that in the mutant lines they are markedly distorted from 15 days postanthesis during grain development. Starch branching patterns showed an increase in the proportion of short chains (DP 6–10) at an earlier stage, but this increase became much more pronounced at 15 days postanthesis and persisted until maturity. There was also a consistent and drastic reduction throughout seed development in the relative amounts of starch branching enzyme II (SBEII, comprising SBEIIa and SBEIIb) and starch synthase I (SSI) bound to the starch granules. In the soluble phase, however, there was relatively little change in the amount of SBEIIb, SBEIIa or SSI protein. Therefore loss of SSII specifically leads to the loss of SBEIIb, SBEIIa and SSI protein in the granule-bound phase and the effect of this mutation is clearly manifest from the mid-stage of endosperm development in wheat.


2014 ◽  
Vol 289 (13) ◽  
pp. 9233-9246 ◽  
Author(s):  
Amina Makhmoudova ◽  
Declan Williams ◽  
Dyanne Brewer ◽  
Sarah Massey ◽  
Jenelle Patterson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document