scholarly journals The ZmbZIP22 Transcription Factor Regulates 27-kD γ-Zein Gene Transcription during Maize Endosperm Development

2018 ◽  
Vol 30 (10) ◽  
pp. 2402-2424 ◽  
Author(s):  
Chaobin Li ◽  
Yihong Yue ◽  
Hanjun Chen ◽  
Weiwei Qi ◽  
Rentao Song
2009 ◽  
Vol 21 (5) ◽  
pp. 1410-1427 ◽  
Author(s):  
Sabrina Locatelli ◽  
Paolo Piatti ◽  
Mario Motto ◽  
Vincenzo Rossi

2008 ◽  
Vol 22 (4) ◽  
pp. 527-541 ◽  
Author(s):  
Luca Pasini ◽  
Maria Rosaria Stile ◽  
Enrico Puja ◽  
Rita Valsecchi ◽  
Priscilla Francia ◽  
...  

1999 ◽  
Vol 19 (11) ◽  
pp. 7589-7599 ◽  
Author(s):  
Mariano Ubeda ◽  
Mario Vallejo ◽  
Joel F. Habener

ABSTRACT The transcription factor CHOP (C/EBP homologous protein 10) is a bZIP protein induced by a variety of stimuli that evoke cellular stress responses and has been shown to arrest cell growth and to promote programmed cell death. CHOP cannot form homodimers but forms stable heterodimers with the C/EBP family of activating transcription factors. Although initially characterized as a dominant negative inhibitor of C/EBPs in the activation of gene transcription, CHOP-C/EBP can activate certain target genes. Here we show that CHOP interacts with members of the immediate-early response, growth-promoting AP-1 transcription factor family, JunD, c-Jun, and c-Fos, to activate promoter elements in the somatostatin, JunD, and collagenase genes. The leucine zipper dimerization domain is required for interactions with AP-1 proteins and transactivation of transcription. Analyses by electrophoretic mobility shift assays and by an in vivo mammalian two-hybrid system for protein-protein interactions indicate that CHOP interacts with AP-1 proteins inside cells and suggest that it is recruited to the AP-1 complex by a tethering mechanism rather than by direct binding of DNA. Thus, CHOP not only is a negative or a positive regulator of C/EBP target genes but also, when tethered to AP-1 factors, can activate AP-1 target genes. These findings establish the existence of a new mechanism by which CHOP regulates gene expression when cells are exposed to cellular stress.


2007 ◽  
Vol 21 (6) ◽  
pp. 1443-1457 ◽  
Author(s):  
Mitsuru Ono ◽  
Dennis J. Chia ◽  
Roxana Merino-Martinez ◽  
Amilcar Flores-Morales ◽  
Terry G. Unterman ◽  
...  

Abstract GH plays a central role in controlling somatic growth, tissue regeneration, and intermediary metabolism in most vertebrate species through mechanisms dependent on the regulation of gene expression. Recent studies using transcript profiling have identified large cohorts of genes whose expression is induced by GH. Other results have demonstrated that signal transducer and activator of transcription (Stat) 5b, a latent transcription factor activated by the GH receptor-associated protein kinase, Jak2, is a key agent in the GH-stimulated gene activation that leads to somatic growth. By contrast, little is known about the steps through which GH-initiated signaling pathways reduce gene expression. Here we show that Stat5b plays a critical role in the GH-regulated inhibition of IGF binding protein-1 gene transcription by impairing the actions of the FoxO1 transcription factor on the IGF binding protein-1 promoter. Additional observations using transcript profiling in the liver indicate that Stat5b may be a general mediator of GH-initiated gene repression. Our results provide a model for understanding how GH may simultaneously stimulate and inhibit the expression of different cohorts of genes via the same transcription factor, potentially explaining how GH action leads to integrated biological responses in the whole organism.


Sign in / Sign up

Export Citation Format

Share Document