scholarly journals Time-resolved grazing-incidence small-angle X-ray scattering studies of lipid multibilayers with the insertion of amyloid peptide during the swelling process

2007 ◽  
Vol 40 (s1) ◽  
pp. s367-s372 ◽  
Author(s):  
Jhih-Min Lin ◽  
Tsang-Lang Lin ◽  
U-Ser Jeng
2016 ◽  
Vol 49 (6) ◽  
pp. 1957-1966 ◽  
Author(s):  
Branko Pivac ◽  
Pavo Dubček ◽  
Jasminka Popović ◽  
Jasna Dasović ◽  
Sigrid Bernstorff ◽  
...  

In this work, self-assembled Ge quantum dot (QD) formation in a dielectric matrix is explored. Of particular interest were their structural and optical properties, in order to understand the stress build-up in such a process and its impact on the material properties during processing. To this end, thin films consisting of (Ge + SiO2)/SiO2multilayers grown by RF magnetron sputtering were deposited at room temperature. Annealing of such films at 873 K in inert N2atmosphere produced, at the position of the Ge-rich SiO2layers, a high lateral density (about 1012 cm−2) of Ge QDs with a good crystallinity. SiO2spacer layers separated the adjacent Ge-rich layers, where the Ge QDs were formed with a diameter of about the size of the (Ge + SiO2) as-deposited layer thickness, and created a good vertical repeatability, confirmed by the appearance of a Bragg sheet in two-dimensional small-angle X-ray scattering patterns. The structural analysis, by wide-angle X-ray diffraction, grazing-incidence small-angle X-ray scattering and transmission electron microscopy, has shown that the described processing of the films induced large compressive stress on the formed QDs. Optical analysis by time-resolved photoluminescence (PL) revealed that the high density of crystalline Ge QDs embedded in the amorphous SiO2matrix produced a strong luminescence in the visible part of the spectrum at 2–2.5 eV photon energy. It is shown that the decay dynamics in this energy range are very fast, and therefore the transitions that create such PL are attributed to matrix defects present in the shell surrounding the Ge QD surface (interface region with the matrix). The measured PL peak, though wide at its half-width, when analysed in consecutive short spectral segments showed the same decay dynamics, suggesting the same mechanism of relaxation.


2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


2014 ◽  
Vol 47 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Zoltán Varga ◽  
András Wacha ◽  
Attila Bóta

Time-resolved synchrotron small-angle X-ray scattering (SAXS) was used to study the structural changes during the osmotic shrinkage of a pharmacologically relevant liposomal drug delivery system. Sterically stabilized liposomes (SSLs) with a diameter of 100 nm and composed of hydrogenated soy phosphocholine, cholesterol and distearoyl-phosphoethanolamine-PEG 2000 prepared in a salt-free buffer were mixed with a buffered 0.3 MNaCl solution using a stopped flow apparatus. The changes in the liposome size and the bilayer structure were followed by using SAXS with a time resolution of 20 ms. A linear decrease in liposome size is observed during the first ∼4 s of the osmotic shrinkage, which reveals a water permeability value of 0.215 (15) µm s−1. The change in the size of the liposomes upon the osmotic shrinkage is also confirmed by dynamic light scattering. After this initial step, broad correlation peaks appear on the SAXS curves in theqrange of the bilayer form factor, which indicates the formation of bi- or oligolamellar structures. Freeze-fracture combined with transmission electron microscopy revealed that lens-shaped liposomes are formed during the shrinkage, which account for the appearance of the quasi-Bragg peaks superimposed on the bilayer form factor. On the basis of these observations, it is proposed that the osmotic shrinkage of SSLs is a two-step process: in the initial step, the liposome shrinks in size, while the area/lipid adapts to the decreased surface area, which is then followed by the deformation of the spherical liposomes into lens-shaped vesicles.


Sign in / Sign up

Export Citation Format

Share Document