Structures of benzoxazine-fused triazoles as potential diuretic agents

2012 ◽  
Vol 68 (8) ◽  
pp. o302-o307 ◽  
Author(s):  
Krishnan Ravikumar ◽  
Balasubramanian Sridhar ◽  
Jagadeesh Babu Nanubolu ◽  
Venkatasubramanian Hariharakrishnan ◽  
Awadesh Narain Singh

6,8-Dinitro-2,4-dihydro-1H-benzo[b][1,2,4]triazolo[4,3-d][1,4]oxazin-1-one, C9H5N5O6, (I), a potential diuretic, and its acetylacetone derivative (E)-2-(2-hydroxy-4-oxopent-2-en-3-yl)-6,8-dinitro-2,4-dihydro-1H-benzo[b][1,2,4]triazolo[4,3-d][1,4]oxazin-1-one, C14H11N5O8, (II), both crystallize from methanol but in centrosymmetric and noncentrosymmetric space groups, respectively. To the best of our knowledge, this is the first report of crystal structures of benzoxazine–triazole fused systems. The acetylacetone group in (II) exists as the keto–enol tautomer and is oriented perpendicular to the triazol-3-one ring. Of the two nitro groups present, one is rotated significantly less than the other in both structures. The oxazine ring adopts a screw-boat conformation in (II), whereas it is almost planar in (I). N—H...N and N—H...O hydrogen bonds form centrosymmetric dimers in (I), while C—H...O interactions associate the molecules into helical columns in (II).

Author(s):  
Akintunde Akinyemi ◽  
Courtney Thomas ◽  
Willis Marsh ◽  
Ray J. Butcher ◽  
Jerry P. Jasinski ◽  
...  

In the structures of the two title coumarin derivatives, C14H12O6, (1), and C20H16O6, (2), one with acetate and the other with pent-4-ynoate substituents, both the coumarin rings are almost planar. In (1), both acetate substituents are significantly rotated out of the coumarin plane to minimize steric repulsions. One acetate substituent is disordered over two equivalent conformations, with occupancies of 0.755 (17) and 0.245 (17). In (2), there are two pent-4-ynoate substituents, the C[triple-bond]C group of one being disordered over two positions with occupancies of 0.55 (2) and 0.45 (2). One of the pent-4-ynoate substituents is in an extended conformation, while the other is in a bent conformation. In this derivative, the planar part of both pent-4-ynoate substituents deviate from the coumarin plane. The packing of (1) is dominated by π–π stacking involving the coumarin rings and weak C—H...O contacts link the parallel stacks in the [101] direction. In contrast, in (2) the packing is dominated byR22(24) hydrogen bonds, involving the acidicspH atom and the oxo O atom, which link the molecules into centrosymmetric dimers. The bent conformation of one of the pent-4-ynoate substituents prevents the coumarin rings from engaging in π–π stacking.


2014 ◽  
Vol 70 (10) ◽  
pp. 998-1002 ◽  
Author(s):  
Mehrdad Pourayoubi ◽  
Atekeh Tarahhomi ◽  
Arnold L. Rheingold ◽  
James A. Golen

InN,N,N′,N′-tetraethyl-N′′-(4-fluorobenzoyl)phosphoric triamide, C15H25FN3O2P, (I), andN-(2,6-difluorobenzoyl)-N′,N′′-bis(4-methylpiperidin-1-yl)phosphoric triamide, C19H28F2N3O2P, (II), the C—N—C angle at each tertiary N atom is significantly smaller than the two P—N—C angles. For the other new structure,N,N′-dicyclohexyl-N′′-(2-fluorobenzoyl)-N,N′-dimethylphosphoric triamide, C21H33FN3O2P, (III), one C—N—C angle [117.08 (12)°] has a greater value than the related P—N—C angle [115.59 (9)°] at the same N atom. Furthermore, for most of the analogous structures with a [C(=O)NH]P(=O)[N(C)(C)]2skeleton deposited in the Cambridge Structural Database [CSD; Allen (2002).Acta Cryst.B58, 380–388], the C—N—C angle is significantly smaller than the two P—N—C angles; exceptions were found for four structures with theN-methylcyclohexylamide substituent, similar to (III), one structure with the seven-membered cyclic amide azepan-1-yl substituent and one structure with anN-methylbenzylamide substituent. The asymmetric units of (I), (II) and (III) contain one molecule, and in the crystal structures, adjacent molecules are linkedviapairs of N—H...O=P hydrogen bonds to form dimers.


Author(s):  
Ivica Cvrtila ◽  
Vladimir Stilinović

The crystal structures of two polymorphs of a phenazine hexacyanoferrate(II) salt/cocrystal, with the formula (Hphen)3[H2Fe(CN)6][H3Fe(CN)6]·2(phen)·2H2O, are reported. The polymorphs are comprised of (Hphen)2[H2Fe(CN)6] trimers and (Hphen)[(phen)2(H2O)2][H3Fe(CN)6] hexamers connected into two-dimensional (2D) hydrogen-bonded networks through strong hydrogen bonds between the [H2Fe(CN)6]2− and [H3Fe(CN)6]− anions. The layers are further connected by hydrogen bonds, as well as through π–π stacking of phenazine moieties. Aside from the identical 2D hydrogen-bonded networks, the two polymorphs share phenazine stacks comprising both protonated and neutral phenazine molecules. On the other hand, the polymorphs differ in the conformation, placement and orientation of the hydrogen-bonded trimers and hexamers within the hydrogen-bonded networks, which leads to different packing of the hydrogen-bonded layers, as well as to different hydrogen bonding between the layers. Thus, aside from an exceptional number of symmetry-independent units (nine in total), these two polymorphs show how robust structural motifs, such as charge-assisted hydrogen bonding or π-stacking, allow for different arrangements of the supramolecular units, resulting in polymorphism.


1985 ◽  
Vol 63 (2) ◽  
pp. 516-525 ◽  
Author(s):  
Osvald Knop ◽  
T. Stanley Cameron ◽  
S. P. Deraniyagala ◽  
D. Adhikesavalu ◽  
Michael Falk

The crystal structure of (NH4)2AlF5•H2O = (NH4)2[AlF5(H2O)] (Pbcn, a = 10.192(4) Å, b = 8.037(2) Å, c = 7.844(1) Å, Z = 4) consists of isolated [AlF5(H2O)]2− octahedral and NH4+ ions. The octahedra are linked by [Formula: see text] bonds to form zigzag chains parallel to c and the chains are cross-linked by normal [Formula: see text] hydrogen bonds to the NH4+ ions. The ir characteristics of the hydrogen bonds in this and the other two title compounds were probed with the NH3D+ ion between 10 and 293 K. The probe-ion spectra confirm the C1 symmetry of the ammonium ion in (NH4)2[AlF5(H2O)] and point to [Formula: see text] bonding of moderate strength. For NH4AlF4 the spectra agree with the expectation from the known crystal structure of both the ordered and the disordered phase, but the transition at ~150 K is not evident in the evolution of the spectra with temperature. Detailed assignment of the ND stretching and bending component absorptions of NH3D+ is not possible for (NH4)3ZnCl5 = (NH4)3(ZnCl4)Cl. However, the unusually low frequencies of two of the components of the ND stretching absorptions in this crystal indicate the existence of [Formula: see text] bonds stronger than those in NH4Cl. The filiation of the known AMF4 structures deriving from TlAlF4 is presented in terms of two-colour space groups.


2018 ◽  
Vol 74 (3) ◽  
pp. 351-359
Author(s):  
Miguel Angel Harvey ◽  
Sebastián Suarez ◽  
Pavel N. Zolotarev ◽  
Davide M. Proserpio ◽  
Ricardo Baggio

A nickel(II) coordination complex, bis[2,6-bis(1H-benzimidazol-2-yl-κN3)pyridine-κN]nickel(II) sulfate, [Ni(C19H13N5)2]SO4or [Ni(H2L)2]SO4, having four peripheral tetrahedrally oriented N—H donor units, combines with sulfate bridges to create hydrogen-bonded structures of varied dimensionality. The three crystal structures reported herein in the space groupsP212121,I\overline{4} andPccnare defined solely by strong charge-assisted N—H...O hydrogen bonds and contain disordered guests (water and dimethylformamide) that vary in size, shape and degree of hydrophilicity. Two of the compounds are channelled solids with three-dimensional structures, while the third is one-dimensional in nature. In spite of their differences, all three present a striking resemblance to the previously reported anhydrous relative [Guoet al.(2011).Chin. J. Inorg. Chem.27, 1517–1520], which is considered as the reference framework from which all three title compounds are derived. The hydrogen-bonded frameworks are described and compared using crystallographic and topological approaches.


2019 ◽  
Vol 75 (11) ◽  
pp. 1586-1589
Author(s):  
Jaroslaw Mazurek ◽  
Ana Fernandez-Casares

Two novel crystal forms of bis(oxonium) ethane-1,2-disulfonate, 2H3O−·C2H4O6S2 2−, are reported. Polymorph II has monoclinic (P21/n) symmetry, while the symmetry of form III is triclinic (P\overline{1}). Both structures display extensive networks of O—H...O hydrogen bonds. While this network in Form II is similar to that observed for the previously reported Form I [Mootz & Wunderlich (1970). Acta Cryst. B26, 1820–1825; Sartori et al. (1994). Z. Naturforsch. 49, 1467–1472] and extends in all directions, in Form III it differs significantly, forming layers parallel to the ab plane. The sulfonate molecule in all three forms adopts a nearly identical geometry. The other observed differences between the forms, apart from the hydrogen-bonding network, are observed in the crystal density and packing index.


Author(s):  
Gerhard Laus ◽  
Volker Kahlenberg ◽  
Thomas Gelbrich ◽  
Sven Nerdinger ◽  
Herwig Schottenberger

Mutual carboxyl–carboxyl O—H...O hydrogen bonds link the molecules of the title compound, C7H5BrO3, into centrosymmetric dimers which display a centralR22(8) ring motif. In addition, there is an intramolecular hydroxyl–carboxyl O—H...O interaction present. A comparison with the crystal structures of 59 other substituted derivatives of salicylic acid shows that both the centrosymmetric carboxyl–carboxyl O—H...O dimer and the stacking mode of molecules along the shortaaxis observed in the title structure are frequent packing motifs in this set.


2009 ◽  
Vol 65 (6) ◽  
pp. o1188-o1189 ◽  
Author(s):  
Hoong-Kun Fun ◽  
Chin Sing Yeap ◽  
M. Babu ◽  
B. Kalluraya

In the title compound, C14H14F2N2O3, the dihydropyrimidinone ring adopts a flattened boat conformation. The difluorophenyl group is disordered over two orientations with occupancies of 0.544 (3) and 0.456 (3). The methoxycarbonyl group is disordered over two positions with occupancies of 0.580 (8) and 0.420 (8). In the crystal, molecules are linked into centrosymmetric dimers by paired N—H...O hydrogen bonds and the dimers are linked into a ribbon-like structure along [100] by further N—H...O hydrogen bonds.


2017 ◽  
Vol 73 (3) ◽  
pp. 287-297 ◽  
Author(s):  
Farahnaz Hamzehee ◽  
Mehrdad Pourayoubi ◽  
Marek Nečas ◽  
Duane Choquesillo-Lazarte

The N—H...O hydrogen bond is the characteristic interaction in the crystal structures of N-benzyl-P-phenyl-N′-(p-tolyl)phosphonic diamide, C20H21N2OP or (C6H5)P(O)(NHCH2C6H5)(NHC6H4-p-CH3), (I), diphenylphosphinic 1-methylpropylamide, C16H20NOP or (C6H5)2P(O)[NHCH(CH3)(C2H5)], (II), (S)-1-phenylethylammonium N-[(S)-1-phenylethyl]phenylphosphonamidate, C8H12N+·C14H15NO2P− or [S-(C6H5)CH(CH3)NH3][(C6H5)P(O){S-NHCH(CH3)(C6H5)}(O)], (III), and (4-methylbenzyl)ammonium diphenylphosphinate, C8H12N+·C12H10O2P− or [4-CH3-C6H4CH2NH3][(C6H5)2P(O)(O)], (IV). This article focuses on the N—H...O hydrogen bonds by considering the structures of (I), (II), (III) and (IV), and reviewing their analogous compounds, including 43 (C)P(O)(N)2, 102 (C)2P(O)(N), 31 (C)P(O)(N)(O) and 96 (C)2P(O)(O) structures, deposited in the Cambridge Structural Database (CSD). For the structures with a (C)P(O)(N)2 segment, only neutral hydrogen bonds were found in the CSD. The other three classes of compounds included both neutral and `charge-assisted' hydrogen bonds, and the (C)2P(O)(O) structures were particularly noticeable for a high number of cation–anion compounds. The overall tendencies of N...O distances in neutral and cation–anion compounds were compared. The N—H...O hydrogen-bond angles were also analyzed for the four classes of phosphorus compounds.


2017 ◽  
Vol 73 (7) ◽  
pp. 575-581 ◽  
Author(s):  
Philipp Kramer ◽  
Michael Bolte

Kryptoracemates are racemic compounds (pairs of enantiomers) that crystallize in Sohnke space groups (space groups that contain neither inversion centres nor mirror or glide planes nor rotoinversion axes). Thus, the two symmetry-independent molecules cannot be transformed into one another by any symmetry element present in the crystal structure. Usually, the conformation of the two enantiomers is rather similar if not identical. Sometimes, the two enantiomers are related by a pseudosymmetry element, which is often a pseudocentre of inversion, because inversion symmetry is thought to be favourable for crystal packing. We obtained crystals of two kryptoracemates of two very similar compounds differing in just one residue, namely rac-N-[(1S,2R,3S)-2-methyl-3-(5-methylfuran-2-yl)-1-phenyl-3-(pivalamido)propyl]benzamide, C27H32N2O3, (I), and rac-N-[(1S,2S,3R)-2-methyl-3-(5-methylfuran-2-yl)-1-phenyl-3-(propionamido)propyl]benzamide dichloromethane hemisolvate, C25H28N2O3·0.5CH2Cl2, (II). The crystals of both compounds contain both enantiomers of these chiral molecules. However, since the space groups [P212121 for (I) and P1 for (II)] contain neither inversion centres nor mirror or glide planes nor rotoinversion axes, there are both enantiomers in the asymmetric unit, which is a rather uncommon phenomenon. In addition, it is remarkable that (II) contains two pairs of enantiomers in the asymmetric unit. In the crystal, molecules are connected by intermolecular N—H...O hydrogen bonds to form chains or layered structures.


Sign in / Sign up

Export Citation Format

Share Document