The bis(ethylenedithio)tetrathiafulvalene-based ionic charge-transfer complex with 2,3-dichloro-5,6-dicyano-p-benzoquinone

Author(s):  
Yuki Nakagawa ◽  
Yukihiro Takahashi ◽  
Jun Harada ◽  
Tamotsu Inabe

In the ionic charge-transfer (CT) complex composed of bis(ethylenedithio)tetrathiafulvalene (ET) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), C10H8S8·C8Cl2N2O2, the donor and acceptor molecules both form centrosymmetric dimers associated by strong face-to-face π–π interactions. The disordered DDQ molecules form a one-dimensional π-stacked column, while the ET molecules form a two-leg ladder through additional short S...S contacts between adjacent π–π-bonded dimers. The crystal structure of ET–DDQ revealed in this study will provide a valuable example of the two-leg spin ladder system, which has rarely been reported for ET-based CT complexes.

2002 ◽  
Vol 12 (9) ◽  
pp. 357-360
Author(s):  
M. Buron ◽  
E. Collet ◽  
M. H. Lemée-Cailleau ◽  
H. Cailleau ◽  
T. Luty ◽  
...  

Mixed-stack charge-transfer (CT) complexes undergoing the neutral-ionic (N-I) phase transition are molecular materials formed of stacks where electron donor (D) and acceptor (A) molecules regularly alternate. In the N phase, the CT is low and molecules are situated on inversion centers, while in the I phase, the increase of CT is accompanied by a lattice distortion (dimerization process and symmetry breaking). The one-dimensional (1D) architecture triggers the chain multistability by stabilizing lattice-relaxed (LR)-CT excitations ...D° A° D° A° $(D^+A^-)(D^+A^-)(D^+A^-)$ Do A" D° A° D°... These 1D nano-scale objects are at the heart of the equilibrium N-I phase transition and govern the fascinating physical properties such as giant dielectric response or photo-induced phase transformations. In this contribution, the 1D character of these critical excitations will be demonstrated by direct observation using high resolution X-Ray diffraction.


2019 ◽  
Vol 43 (23) ◽  
pp. 9039-9051 ◽  
Author(s):  
Ishaat M. Khan ◽  
Kehkashan Alam ◽  
Mohammad Jane Alam ◽  
Musheer Ahmad

The photocatalytic activity of a new CT complex was tested. Spectrophotometric studies were performed to understand its formation through N+–H⋯O− hydrogen bonding, and the structure was confirmed by single crystal XRD.


1974 ◽  
Vol 29 (6) ◽  
pp. 880-887 ◽  
Author(s):  
P. P. Schmidt

This paper reports a theory of the inner sphere-type electron transfer reaction. Inner sphere reactions, as opposed to the outer sphere variety, require that the solvate or ligand shells surrounding the electron donor and acceptor species undergo considerable change in the course of the electron transfer. In this paper we assume that the electron transfer step takes place in a molecular complex which exists in equilibrium with the reactants. The electron transfer step occurs as a non-radiative charge transfer-type transition. In this manner we treat the charge transfer kinetics, in particular, the evaluation of the reaction rate constant, in the same manner as is usual for non-radiative problems. The analysis leading to the rate constant expression is based on Yamamoto’s general chemical reaction rate theory. The rate constant expressions obtained are quite general, they hold for any degree of strength of coupling between subsystems comprising the entire system. The activation energy, in the Arrhenius form for the rate constant, shows a dependence on the energy (work) of formation of the intermediate charge transfer complex, on vibrational shift energies associated with the molecular motions of the ligands, and on solvent repolarization energies. The activation energy also shows an important dependence on coupling terms which link the vibrations of the molecular inner shell with the polarization states of the (assumed) dielectric continuum which surrounds the charge transfer participants. The approach we take in developing this theory we believe points the way towards the development of a more complete theory capable of accounting for the dynamics of the molecular reorganization leading to the intermediate charge transfer complex as well as accounting for the electron transfer step itself.


2015 ◽  
Vol 7 (36) ◽  
pp. 20280-20284 ◽  
Author(s):  
Tsz-Wai Ng ◽  
Hrisheekesh Thachoth Chandran ◽  
Chiu-Yee Chan ◽  
Ming-Fai Lo ◽  
Chun-Sing Lee

2019 ◽  
Vol 23 (10) ◽  
pp. 1149-1157 ◽  
Author(s):  
Somnath Chowdhury ◽  
Prajna Mukherjee ◽  
Monoj Das ◽  
Bikash C. Gupta

We have investigated the possible formation of charge transfer (CT) complexes of metallotetraphenylporphyrins (MTPhP with M = Mn, Fe, Co, Ni and Cu) and metallooctaethylporphyrins (MOEtP with M = Mn, Fe, Co, Ni, Cu and Zn) with the aromatic solvents, namely benzene, chlorobenzene, benzonitrile and toluene, respectively, in the tetrahydrofuran (THF) media. We have carried out energy minimization calculations of the hybrid systems (metalloporphyrins and aromatic solvents) in 1:1 and 1:2 stoichiometry in presence of THF media. We have analyzed the role of metal present in the metalloporphyrin in the formation of complexes for both 1:1 and 1:2 stoichiometry. Our analysis reveals that the MTPhP-solvent hybrid system is more stable compared to the MOEtP-solvent hybrid system.


Sign in / Sign up

Export Citation Format

Share Document