Kinetic behaviour investigations and crystal structure of nitric acid dihydrate

2001 ◽  
Vol 57 (1) ◽  
pp. 27-35 ◽  
Author(s):  
N. Lebrun ◽  
F. Mahe ◽  
J. Lamiot ◽  
M. Foulon ◽  
J. C. Petit ◽  
...  

X-ray powder diffraction experiments are performed to prove the possible crystallization of nitric acid dihydrate (HNO3·2H2O, further denoted NAD) and to determine the best thermal conditions for growing a single crystal. It is shown that the kinetic behaviour of NAD strongly depends on the preliminary thermal treatment. One good single crystal obtained by an in situ adapted Bridgman method procedure enabled determination of the crystal structure. The intensities of diffracted lines with h odd are all very weak. The H atom of nitric acid is delocalized to one water molecule leading to an association of equimolar nitrate (NO3 −) and an H5O2 + ionic group. The asymmetric unit contains two such molecules. These two molecules are related by a pseudo a/2 translation (with a 0.3 Å mean atomic distance difference), except for one H atom of the water molecules (0.86 Å) because of their different orientations in the two molecules. The two molecules, linked by very strong hydrogen bonds, are arranged in layers. Two layers which are linked by weaker hydrogen bonds are approximately oriented along the c axis. The structure may be described by translations of this set of two layers along the c axis without hydrogen bonds leading to a two-dimensional hydrogen-bond network. The structures of the monohydrate (NAM) and trihydrate (NAT) are re-determined for comparisons. These structures may be described by one- and three-dimensional hydrogen-bond networks, respectively.

Author(s):  
Graham Smith ◽  
Urs D. Wermuth

In the structure of the brucinium salt of 4-aminophenylarsonic acid (p-arsanilic acid), systematically 2,3-dimethoxy-10-oxostrychnidinium 4-aminophenylarsonate tetrahydrate, (C23H27N2O4)[As(C6H7N)O2(OH)]·4H2O, the brucinium cations form the characteristic undulating and overlapping head-to-tail layered brucine substructures packed along [010]. The arsanilate anions and the water molecules of solvation are accommodated between the layers and are linked to them through a primary cation N—H...O(anion) hydrogen bond, as well as through water O—H...O hydrogen bonds to brucinium and arsanilate ions as well as bridging water O-atom acceptors, giving an overall three-dimensional network structure.


2015 ◽  
Vol 71 (12) ◽  
pp. o991-o992
Author(s):  
Kamel Ouari

In the title compound, C12H8BrN3O, the 4-bromophenol ring is coplanar with the planar imidazo[4,5-b]pyridine moiety (r.m.s deviation = 0.015 Å), making a dihedral angle of 1.8 (2)°. There is an intramolecular O—H...N hydrogen bond forming anS(6) ring motif. In the crystal, molecules are linkedviaN—H...N and O—H...Br hydrogen bonds, forming undulating sheets parallel to (10-2). The sheets are linked by π–π interactions [inter-centroid distance = 3.7680 (17) Å], involving inversion-related molecules, forming a three-dimensional structure.


2014 ◽  
Vol 70 (10) ◽  
pp. o1106-o1106
Author(s):  
Yong-Le Zhang ◽  
Chuang Zhang ◽  
Wei Guo ◽  
Jing Wang

In the title compound, C9H9N3OS, the plane of the benzene ring forms a dihedral angle of 33.40 (5)° with that of the triazole group. In the crystal, molecules are linked by O—H...N hydrogen bonds involving the phenol –OH group and one of the unsubstituted N atoms of the triazole ring, resulting in chains along [010]. These chains are further extended into a layer parallel to (001) by weak C—H...N hydrogen-bond interactions. Aromatic π–π stacking [centroid–centroid separation = 3.556 (1) Å] between the triazole rings links the layers into a three-dimensional network.


Author(s):  
Sevim Türktekin Çelikesir ◽  
Mehmet Akkurt ◽  
Aliasghar Jarrahpour ◽  
Habib Allah Shafie ◽  
Ömer Çelik

In the title compound, C22H18N2O5, the central β-lactam ring (r.m.s. deviation = 0.002 Å) makes dihedral angles of 64.21 (14), 82.35 (12) and 20.66 (13)° with the phenyl ring and the nitro- and methoxybenzene rings, respectively. The molecular structure is stabilized by an intramolecular C—H...O hydrogen bond. In the crystal, molecules are linkedviaC—H...O hydrogen bonds, forming slabs lying parallel to (111). The slabs are linkedviaC—H...π interactions, forming a three-dimensional network.


Author(s):  
A. Baskaran ◽  
K. Rajarajan ◽  
M. NizamMohideen ◽  
P. Sagayaraj

In the title complex, [Hg(NCS)2(CH4N2S)2], the HgIIatom is four-coordinated having an irregular four-coordinate geometry composed of four thione S atoms of two thiocyanate groups and two thiourea groups. The S—Hg—S angles are 172.02 (9)° for thetrans-thiocyanate S atoms and 90.14 (5)° for thecis-thiourea S atoms. The molecular structure is stabilized by an intramolecular N—H...S hydrogen bond, which forms anS(6) ring motif. In the crystal, molecules are linked by a number of N—H...N and N—H...S hydrogen bonds, forming a three-dimensional framework. The first report of the crystal structure of this compound appeared in 1966 [Korczynski (1966).Rocz. Chem.40, 547–569] with an extremely highRfactor of 17.2%, and no mention of how the data were collected.


2015 ◽  
Vol 71 (8) ◽  
pp. o548-o549
Author(s):  
Gihaeng Kang ◽  
Jineun Kim ◽  
Hyunjin Park ◽  
Tae Ho Kim

The title compound [systematic name: 3-hydroxy-2-(4-methylsulfonyl-2-nitrobenzoyl)cyclohex-2-enone], C14H13NO7S, is the enol form of a benzoylcyclohexanedione herbicide. As a result of this tautomerization, there is intramolecular O—H...O hydrogen bond enclosing anS(6) ring motif. The cyclohexene ring has an envelope conformation, with the central CH2C atom as the flap. Its mean plane is inclined to the benzene ring by 87.46 (8)°. In the crystal, molecules are linked by a series of C—H...O hydrogen bonds, forming a three-dimensional framework.


2014 ◽  
Vol 70 (12) ◽  
pp. o1292-o1292 ◽  
Author(s):  
Nadir Ghichi ◽  
Ali Benboudiaf ◽  
Hocine Merazig

In the title compound, C20H17NO3, the methylidenecyclohexa-2,4-dienone moiety is approximately planar [maximum deviation = 0.0615 (10) Å] and is oriented at diherdral angles of 69.60 (7) and 1.69 (9)° to the phenyl and hydroxybenzene rings, respectively. The amino group links with the carbonyl O atomviaan intramolecular N—H...O hydrogen bond, forming anS(6) ring motif. In the crystal, the molecules are linked by O—H...O hydrogen bonds and weak C—H...O and C—H...π interactions, forming a three-dimensional supramolecular architecture.


2012 ◽  
Vol 68 (6) ◽  
pp. o1848-o1849 ◽  
Author(s):  
Mohamed I. Attia ◽  
Mohamed N. Aboul-Enein ◽  
Nasser R. El-Brollosy ◽  
Seik Weng Ng ◽  
Edward R. T. Tiekink

In the title compound, C20H21N5O, the conformation about the imine bond [1.289 (3) Å] is E. Overall, the molecule is disk-shaped with the imidazole ring located above the remainder of the molecule and with the dihedral angles of 10.97 (15) and 12.11 (15)°, respectively, between the imidazole ring and the phenyl and methylbenzene rings; the dihedral angle between the aromatic rings is 8.17 (14)°. Within the urea unit, the N—H atoms are anti to each other and one of the N—H atoms forms an intramolecular N—H...N hydrogen bond. Helical supramolecular chains along [001] are formed via N—H...N(imidazole) hydrogen bonds in the crystal structure. These are connected into a three-dimensional architecture by C—H...O(carbonyl) and C—H...π interactions.


Author(s):  
Suchada Chantrapromma ◽  
Narissara Kaewmanee ◽  
Nawong Boonnak ◽  
Kan Chantrapromma ◽  
Hazem A. Ghabbour ◽  
...  

The title azastilbene derivative, C14H13NO2{systematic name: (E)-2-[(4-methoxybenzylidene)amino]phenol}, is a product of the condensation reaction between 4-methoxybenzaldehyde and 2-aminophenol. The molecule adopts anEconformation with respect to the azomethine C=N bond and is almost planar, the dihedral angle between the two substituted benzene rings being 3.29 (4)°. The methoxy group is coplanar with the benzene ring to which it is attached, the Cmethyl—O—C—C torsion angle being −1.14 (12)°. There is an intramolecular O—H...N hydrogen bond generating anS(5) ring motif. In the crystal, molecules are linkedviaC—H...O hydrogen bonds, forming zigzag chains along [10-1]. The chains are linkedviaC—H...π interactions, forming a three-dimensional structure.


2014 ◽  
Vol 69 (7) ◽  
pp. 839-843 ◽  
Author(s):  
Guido D. Frey ◽  
Wolfgang W. Schoeller ◽  
Eberhardt Herdtweck

The crystal structure of 1-(1H-pyrazol-4-yl)ethanone (commonly known as 4-acetylpyrazole; C5H6N2O) was determined from single-crystal X-ray data at 173 K: monoclinic, space group P21/n (no. 14), a = 3.865(1), b = 5.155(1), c = 26.105(8) Å, β = 91.13(1)°, V = 520.0(2) Å3 and Z = 4. The adjacent molecules assemble into a wave-like ribbon structure in the solid state, linked by strong intermolecular N-H...N hydrogen bonds between the pyrazole rings and a weak C-H...O=C hydrogen bond involving the carbonyl group. The ribbons are stacked in the solid state via weak π interactions between the pyrazole rings.


Sign in / Sign up

Export Citation Format

Share Document