Space group and atomic structure determination of a nano-sized ordered phase derived from a f.c.c. structure in maraging steel 12Cr–9Ni–4Mo–2Cu using transmission electron microscopy

2003 ◽  
Vol 59 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Ping Liu

The unique properties of maraging steel Sandvik 1RK91 were attributed to unique precipitation: a nano-sized L phase in addition to the quasi-crystalline R′ phase, which differs from any precipitation system in conventional maraging steels. The L phase was observed after ageing at either 748 or 823 K. It has flake morphology with dimensions ∼100 × 500 × 500 Å. In the present study the structure of the L phase was examined using convergent-beam electron diffraction (CBED), energy-dispersive X-ray analysis (EDX) and high-resolution electron microscopy (HREM). The L phase could be described as Ti19Fe9Mo9Al8Cr5Ni50 or simply M 50Ni50 (M = Ti, Fe, Mo, Al and Cr). The L phase is isostructural to FeNi. Its crystal structure was determined to have the ordered structure of the uAu-I type (L10, P4/mmm, a = 3.52, c = 3.63 Å and Z = 2) with two Ni atoms at ½ 0 ½ and 0 ½ ½, and two M atoms at 0 0 0 and ½ ½ 0. The crystal structure of the L phase can also be described using a primitive tetragonal cell and lattice parameters: a = 2.49 and c = 3.63 Å, Z = 1. The volume of the primitive tetragonal unit cell is 22.5 Å3 and the density is ∼6.98 g cm−3. The present study has demonstrated the possibility of determining the structure of an extremely small crystal by utilizing the information from CBED, EDX analysis and HREM.

1997 ◽  
Vol 3 (S2) ◽  
pp. 673-674
Author(s):  
M. Rühle ◽  
T. Wagner ◽  
S. Bernath ◽  
J. Plitzko ◽  
C. Scheu ◽  
...  

Heterophase boundaries play an important role in advanced materials since those materials often comprise different components. The properties of the materials depend strongly on the properties of the interface between the components. Thus, it is important to investigate the stability of the microstructure with respect to annealing at elevated temperatures. In this paper results will be presented on the structure and composition of the interfaces between Cu and (α -Al2O3. The interfaces were processed either by growing a thin Cu overlayer on α- Al2O3 in a molecular beam epitaxy (MBE) system or by diffusion bonding bulk crystals of the two constituents in an UHV chamber. To improve the adhesion of Cu to α -Al2O3 ultrathin Ti interlayers were deposited between Cu and α - Al2O3.Interfaces were characterized by different transmission electron microscopy (TEM) techniques. Quantitative high-resolution electron microscopy (QHRTEM) allows the determination of the structure (coordinates of atoms) while analytical electron microscopy (AEM) allows the determination of the composition with high spatial resolution.


2009 ◽  
Vol 1184 ◽  
Author(s):  
Fanghua Li ◽  
Chunyan Tang

AbstractImage deconvolution is introduced as an effective tool to enhance the determination of crystal structures and defects in high-resolution electron microscopy. The essence is to transform a single image that does not intuitively represent the examined crystal structure into the structure image. The principle and method of image deconvolution together with the related image contrast theory, the pseudo weak phase object approximation (pseudo WPOA), are briefly described. The method has been applied to different types of dislocations, twin boundaries, stacking faults, and one-dimensional incommensurate modulated structures. Results on the semiconducting epilayers Si0.76Ge0.24/Si and 3C-SiC/Si are given in some detail. The results on other compounds including AlSb/GaAs, GaN, Y0.6Na0.4Ba2Cu2.7Zn0.3O7-δ, Ca0.28Ba0.72Nb2O6 and Bi2.31Sr1.69CuO6+δ are briefly summarized. It is also shown how to recognize atoms of Si from C based on the pseudo WPOA, when the defect structures in SiC was determined at the atomic level with a 200 kV LaB6 microscope.


1985 ◽  
Vol 62 ◽  
Author(s):  
J. M. Howe ◽  
R. Gronsky

ABSTRACTRecent advances in transmission electron microscopy instrumentation and technique now make it possible to study the shape-evolution of precipitates in metallic alloys at the atomic level. This investigation demostrates how a combination of transmission electron microscopy techniques; namely, high-resolution electron microscopy, image simulation, energy-dispersive x-ray spectroscopy and convergent-beam electron diffraction are used to characterize the atomic structures, chemistry and growth mechanisms of γ' precipitate plates in an Al-4.2 a/o Ag alloy aged for 30 min. at 350°C. The complimentary information obtained from each of these techniques allows modelling of the growth process at the atomic level, thus providing insight into the basic precipitation behavior of alloys.


Author(s):  
K. J. Morrissey

Grain boundaries and interfaces play an important role in determining both physical and mechanical properties of polycrystalline materials. To understand how the structure of interfaces can be controlled to optimize properties, it is necessary to understand and be able to predict their crystal chemistry. Transmission electron microscopy (TEM), analytical electron microscopy (AEM,), and high resolution electron microscopy (HREM) are essential tools for the characterization of the different types of interfaces which exist in ceramic systems. The purpose of this paper is to illustrate some specific areas in which understanding interface structure is important. Interfaces in sintered bodies, materials produced through phase transformation and electronic packaging are discussed.


Author(s):  
Jan-Olle Malm ◽  
Jan-Olov Bovin

Understanding of catalytic processes requires detailed knowledge of the catalyst. As heterogeneous catalysis is a surface phenomena the understanding of the atomic surface structure of both the active material and the support material is of utmost importance. This work is a high resolution electron microscopy (HREM) study of different phases found in a used automobile catalytic converter.The high resolution micrographs were obtained with a JEM-4000EX working with a structural resolution better than 0.17 nm and equipped with a Gatan 622 TV-camera with an image intensifier. Some work (e.g. EDS-analysis and diffraction) was done with a JEM-2000FX equipped with a Link AN10000 EDX spectrometer. The catalytic converter in this study has been used under normal driving conditions for several years and has also been poisoned by using leaded fuel. To prepare the sample, parts of the monolith were crushed, dispersed in methanol and a drop of the dispersion was placed on the holey carbon grid.


2001 ◽  
Vol 16 (8) ◽  
pp. 2189-2191 ◽  
Author(s):  
Guo-Dong Zhan ◽  
Mamoru Mitomo ◽  
Young-Wook Kim ◽  
Rong-Jun Xie ◽  
Amiya K Mukherjee

Using a pure α–SiC starting powder and an oxynitride glass composition from the Y–Mg–Si–Al–O–N system as a sintering additive, a powder mixture was hot-pressed at 1850 °C for 1 h under a pressure of 20 MPa and further annealed at 2000 °C for 4 h in a nitrogen atmosphere of 0.1 MPa. High-resolution electron microscopy and x-ray diffraction studies confirmed that a small amount of β–SiC was observed in the liquid-phase-sintered α–SiC with this oxynitride glass, indicating stability of β–SiC even at high annealing temperature, due to the nitrogen-containing liquid phase.


Sign in / Sign up

Export Citation Format

Share Document