Hydrogen-bonding behaviour of benzene-1,2,4,5-tetracarboxylic acid: supramolecular structures of different dimensionality in the 2:1 adducts formed with 4,4′-bipyridyl and hexamethylenetetramine

2000 ◽  
Vol 56 (2) ◽  
pp. 261-272 ◽  
Author(s):  
A. J. Lough ◽  
P. S. Wheatley ◽  
G. Ferguson ◽  
C. Glidewell

Co-crystallization of benzene-1,2,4,5-tetracarboxylic acid, C10H6O8, with 4,4′-bipyridyl, C10H8N2, or with hexamethylenetetramine, C6H12N4, from methanol solutions yields in each case a 2:1 salt, [(C10H9N2)+]2·[(C10H4O8)2−] (1) and [(C6H13N4)+]2·[(C10H4O8)2−] (2). In (1) the carboxylate anions lie across centres of inversion, but they contain no intramolecular O—H...O hydrogen bonds: the cations and anions are linked by strong O—H...N and N—H...O hydrogen bonds into a chain-of-rings, and these chains are further linked into a three-dimensional framework structure by means of C—H...O hydrogen bonds and aromatic π...π stacking interactions. Compound (2) contains two independent three-molecule aggregates, comprising a central anion and two cations, linked to the anion by means of short N—H...O hydrogen bonds. One of these aggregates is centrosymmetric, but the other is not, and the two types of anion both form two intramolecular O—H...O hydrogen bonds. The two types of three-molecule aggregate, in which all the anions are virtually parallel, are linked by short C—H...O hydrogen bonds into a molecular staircase.

2001 ◽  
Vol 58 (1) ◽  
pp. 94-108 ◽  
Author(s):  
Craig J. Kelly ◽  
Janet M. S. Skakle ◽  
James L. Wardell ◽  
Solange M. S. V. Wardell ◽  
John N. Low ◽  
...  

Molecules of N-(4′-iodophenylsulfonyl)-4-nitroaniline, 4-O2NC6H4NHSO2C6H4I-4′ (1), are linked by three-centre I...O2N interactions into chains and these chains are linked into a three-dimensional framework by C—H...O hydrogen bonds. In the isomeric N-(4′-nitrophenylsulfonyl)-4-iodoaniline, 4-IC6H4NHSO2C6H4NO2-4′ (2), the chains generated by the I...O2N interactions are again linked into a three-dimensional framework by C—H...O hydrogen bonds. Molecules of N,N-bis(3′-nitrophenylsulfonyl)-4-iodoaniline, 4-IC6H4N(SO2C6H4NO2-3′)2 (3), lie across twofold rotation axes in space group C2/c and they are linked into chains by paired I...O=S interactions: these chains are linked into sheets by a C—H...O hydrogen bond, and the sheets are linked into a three-dimensional framework by aromatic π...π stacking interactions. In N-(4′-iodophenylsulfonyl)-3-nitroaniline, 3-O2NC6H4NHSO2C6H4I-4′ (4), there are R^2_2(8) rings formed by hard N—H...O=S hydrogen bonds and R^2_2(24) rings formed by two-centre I...nitro interactions, which together generate a chain of fused rings: the combination of a C—H...O hydrogen bond and aromatic π...π stacking interactions links the chains into sheets. Molecules of N-(4′-iodophenylsulfonyl)-4-methyl-2-nitroaniline, 4-CH3-2-O2NC6H3NHSO2C6H4I-4′ (5), are linked by N—H...O=S and C—H...O(nitro) hydrogen bonds into a chain containing alternating R^2_2(8) and R^2_2(10) rings, but there are no I...O interactions of either type. There are two molecules in the asymmetric unit of N-(4′-iodophenylsulfonyl)-2-nitroaniline, 2-O2NC6H4NHSO2C6H4I-4′ (6), and the combination of an I...O=S interaction and a hard N—H...O(nitro) hydrogen bond links the two types of molecule to form a cyclic, centrosymmetric four-component aggregate. C—H...O hydrogen bonds link these four-molecule aggregates to form a molecular ladder. Comparisons are made with structures retrieved from the Cambridge Structural Database.


2017 ◽  
Vol 73 (11) ◽  
pp. 1692-1695 ◽  
Author(s):  
Augusto Rivera ◽  
Jicli José Rojas ◽  
Jaime Ríos-Motta ◽  
Michael Bolte

The asymmetric unit of the title co-crystalline adduct, 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD)–4-iodophenol (1/2), C8H16N4·2C6H5IO, comprises a half molecule of the aminal cage polyamine plus a 4-iodophenol molecule. A twofold rotation axis generates the other half of the adduct. The components are linked by two intermolecular O—H...N hydrogen bonds. The adducts are further linked into a three-dimensional framework structure by a combination of N...I halogen bonds and weak non-conventional C—H...O and C—H...I hydrogen bonds.


Author(s):  
Graham Smith ◽  
Urs D. Wermuth

The structures of two ammonium salts of 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid, 5-SSA) have been determined at 200 K. In the 1:1 hydrated salt, ammonium 3-carboxy-4-hydroxybenzenesulfonate monohydrate, NH4+·C7H5O6S−·H2O, (I), the 5-SSA−monoanions give two types of head-to-tail laterally linked cyclic hydrogen-bonding associations, both with graph-setR44(20). The first involves both carboxylic acid O—H...Owaterand water O—H...Osulfonatehydrogen bonds at one end, and ammonium N—H...Osulfonateand N—H...Ocarboxyhydrogen bonds at the other. The second association is centrosymmetric, with end linkages through water O—H...Osulfonatehydrogen bonds. These conjoined units form stacks downcand are extended into a three-dimensional framework structure through N—H...O and water O—H...O hydrogen bonds to sulfonate O-atom acceptors. Anhydrous triammonium 3-carboxy-4-hydroxybenzenesulfonate 3-carboxylato-4-hydroxybenzenesulfonate, 3NH4+·C7H4O6S2−·C7H5O6S−, (II), is unusual, having both dianionic 5-SSA2−and monoanionic 5-SSA−species. These are linked by a carboxylic acid O—H...O hydrogen bond and, together with the three ammonium cations (two on general sites and the third comprising two independent half-cations lying on crystallographic twofold rotation axes), give a pseudo-centrosymmetric asymmetric unit. Cation–anion hydrogen bonding within this layered unit involves a cyclicR33(8) association which, together with extensive peripheral N—H...O hydrogen bonding involving both sulfonate and carboxy/carboxylate acceptors, gives a three-dimensional framework structure. This work further demonstrates the utility of the 5-SSA−monoanion for the generation of stable hydrogen-bonded crystalline materials, and provides the structure of a dianionic 5-SSA2−species of which there are only a few examples in the crystallographic literature.


2014 ◽  
Vol 70 (8) ◽  
pp. 805-811 ◽  
Author(s):  
Channappa N. Kavitha ◽  
Hemmige S. Yathirajan ◽  
Manpreet Kaur ◽  
Eric C. Hosten ◽  
Richard Betz ◽  
...  

The structures of two salts of flunarizine, namely 1-bis[(4-fluorophenyl)methyl]-4-[(2E)-3-phenylprop-2-en-1-yl]piperazine, C26H26F2N2, are reported. In flunarizinium nicotinate {systematic name: 4-bis[(4-fluorophenyl)methyl]-1-[(2E)-3-phenylprop-2-en-1-yl]piperazin-1-ium pyridine-3-carboxylate}, C26H27F2N2+·C6H4NO2−, (I), the two ionic components are linked by a short charge-assisted N—H...O hydrogen bond. The ion pairs are linked into a three-dimensional framework structure by three independent C—H...O hydrogen bonds, augmented by C—H...π(arene) hydrogen bonds and an aromatic π–π stacking interaction. In flunarizinediium bis(4-toluenesulfonate) dihydrate {systematic name: 1-[bis(4-fluorophenyl)methyl]-4-[(2E)-3-phenylprop-2-en-1-yl]piperazine-1,4-diium bis(4-methylbenzenesulfonate) dihydrate}, C26H28F2N22+·2C7H7O3S−·2H2O, (II), one of the anions is disordered over two sites with occupancies of 0.832 (6) and 0.168 (6). The five independent components are linked into ribbons by two independent N—H...O hydrogen bonds and four independent O—H...O hydrogen bonds, and these ribbons are linked to form a three-dimensional framework by two independent C—H...O hydrogen bonds, but C—H...π(arene) hydrogen bonds and aromatic π–π stacking interactions are absent from the structure of (II). Comparisons are made with some related structures.


2004 ◽  
Vol 60 (1) ◽  
pp. 76-89 ◽  
Author(s):  
Antonio Quesada ◽  
Antonio Marchal ◽  
Manuel Melguizo ◽  
John N. Low ◽  
Christopher Glidewell

The structures of six symmetrically 4,6-disubstituted 2-aminopyrimidines, four of them containing a 5-nitroso substituent, have been determined. The nitroso compounds, in particular, exhibit polarized molecular–electronic structures leading to extensive charge-assisted hydrogen bonding. The intermolecular interactions observed include hard hydrogen bonds of N—H...N and N—H...O types together with O—H...O and O—H...N types in 2-amino-4,6-bis(2-hydroxyethylamino)-5-nitrosopyrimidine; soft hydrogen bonds of the C—H...O type in both 2-amino-4,6-bis(morpholino)-5-nitrosopyrimidine (3) and 2-amino-4,6-bis(benzylamino)-5-nitrosopyrimidine (4), and of the C—H...π(arene) type in both 2-amino-4,6-bis(piperidino)pyrimidine (1) and 2-amino-5-nitroso-4,6-bis(3-pyridylmethoxy)pyrimidine (5); and aromatic π...π stacking interactions in 2-amino-5-nitroso-4,6-bis(3-pyridylmethoxy)pyrimidine. The supramolecular structures formed by the hard hydrogen bonds are finite, zero-dimensional in (1), one-dimensional in 2-amino-4,6-bis(3-pyridylmethoxy)pyrimidine (2), two-dimensional in both (3) and (4), and three-dimensional in both (5) and 2-amino-4,6-bis(2-hydroxyethylamino)-5-nitrosopyrimidine.


2018 ◽  
Vol 74 (12) ◽  
pp. 1783-1789
Author(s):  
Asma ◽  
Balakrishna Kalluraya ◽  
Hemmige S. Yathirajan ◽  
Ravindranath S. Rathore ◽  
Christopher Glidewell

Four 1-aryl-1H-pyrazole-3,4-dicarboxylate derivatives, one acid, two esters and a dicarbohydrazide have been synthesized starting from 3-aryl sydnones, and structurally characterized. There is an intramolecular O—H...O hydrogen bond in 1-phenyl-1H-pyrazole-3,4-dicarboxylic acid, C11H8N2O4, (I), and the molecules are linked into a three-dimensional framework structure by a combination of O—H...O, O—H...N, C—H...O and C—H...π(arene) hydrogen bonds. In each of the two esters dimethyl 1-phenyl-1H-pyrazole-3,4-dicarboxylate, C13H12N2O4, (II), and dimethyl 1-(4-methylphenyl)-1H-pyrazole-3,4-dicarboxylate, C14H14N2O4, (III), C—H...O hydrogen bonds lead to the formation of cyclic centrosymmetric dimers: in (III), one of the methoxycarbonyl groups is disordered over two sets of atomic sites having occupancies 0.71 (2) and 0.29 (2). An intramolecular N—H...O hydrogen bond is present in the structure of 1-(4-methoxyphenyl)-1H-pyrazole-3,4-dicarbohydrazide, C12H14N6O3, (IV), and the molecules are linked into a three-dimensional framework structure by a combination of N—H...O, N—H...N, N—H...π(arene) and C—H...O hydrogen bonds. Comparisons are made with the structures of a number of related compounds.


2016 ◽  
Vol 72 (9) ◽  
pp. 670-678 ◽  
Author(s):  
Tholappanavara H. Suresha Kumara ◽  
Gopalpur Nagendrappa ◽  
Nanjappa Chandrika ◽  
Haliwana B. V. Sowmya ◽  
Manpreet Kaur ◽  
...  

Hydrazone derivatives exhibit a wide range of biological activities, while pyrazolo[3,4-b]quinoline derivatives, on the other hand, exhibit both antimicrobial and antiviral activity, so that all new derivatives in these chemical classes are potentially of value. Dry grinding of a mixture of 2-chloroquinoline-3-carbaldehyde and 4-methylphenylhydrazinium chloride gives (E)-1-[(2-chloroquinolin-3-yl)methylidene]-2-(4-methylphenyl)hydrazine, C17H14ClN3, (I), while the same regents in methanol in the presence of sodium cyanoborohydride give 1-(4-methylphenyl)-4,9-dihydro-1H-pyrazolo[3,4-b]quinoline, C17H15N3, (II). The reactions between phenylhydrazinium chloride and either 2-chloroquinoline-3-carbaldehyde or 2-chloro-6-methylquinoline-3-carbaldehyde give, respectively, 1-phenyl-1H-pyrazolo[3,4-b]quinoline, C16H11N3, (III), which crystallizes in the space groupPbcnas a nonmerohedral twin havingZ′ = 3, or 6-methyl-1-phenyl-1H-pyrazolo[3,4-b]quinoline, C17H13N3, (IV), which crystallizes in the space groupR\overline{3}. The molecules of compound (I) are linked into sheets by a combination of N—H...N and C—H...π(arene) hydrogen bonds, and the molecules of compound (II) are linked by a combination of N—H...N and C—H...π(arene) hydrogen bonds to form a chain of rings. In the structure of compound (III), one of the three independent molecules forms chains generated by C—H...π(arene) hydrogen bonds, with a second type of molecule linked to the chains by a second C—H...π(arene) hydrogen bond and the third type of molecule linked to the chain by multiple π–π stacking interactions. A single C—H...π(arene) hydrogen bond links the molecules of compound (IV) into cyclic centrosymmetric hexamers having \overline{3} (S6) symmetry, which are themselves linked into a three-dimensional array by π–π stacking interactions.


2007 ◽  
Vol 63 (11) ◽  
pp. m2708-m2709
Author(s):  
Hai-Tao Xia ◽  
Yu-Fen Liu ◽  
Da-Qi Wang ◽  
Shu-Ping Yang

The title complex, [Sm2(C12H9O2)6(C12H8N2)2]·2C3H7NO, is centrosymmetric. The Sm atom is nine-coordinate in a distorted monocapped square-antiprismatic coordination geometry. Molecules are linked into a chain by C—H...O hydrogen bonds parallel to the a axis direction and into a sheet by C—H...π hydrogen bonds parallel to the (100) plane. The combination of these chains and sheets generates a three-dimensional framework structure.


2013 ◽  
Vol 70 (1) ◽  
pp. 50-54 ◽  
Author(s):  
Yelder A. Castillo ◽  
Luis F. Zapata ◽  
Jorge Trilleras ◽  
Justo Cobo ◽  
Christopher Glidewell

The title compound, C23H17N3O4S, crystallizes withZ′ = 3 in the space groupP\overline{1}. Two of the three independent molecules are broadly similar in terms of both their molecular conformations and their participation in hydrogen bonds, but the third molecule differs from the other two in both of these respects. The molecules are linked by a combination of N—H...O, N—H...N, C—H...O, C—H...N and C—H...π(arene) hydrogen bonds to form a continuous three-dimensional framework structure within which a centrosymmetric six-molecule aggregate can be identified as a key structural element.


2014 ◽  
Vol 70 (10) ◽  
pp. 231-234
Author(s):  
Bernhard Bugenhagen ◽  
Yosef Al Jasem ◽  
Thies Thiemann

In the title molecule, C12H17NO2, the amide NH2group is oriented toward the pentyloxy substituent and an intramolecular N—H...O hydrogen bond is formed with the pentyloxy O atom. The benzene ring forms dihedral angles of 2.93 (2) and 5.60 (2)° with the amide group and the pentyloxy group mean planes, respectively. In the crystal, molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers with their molecular planes parallel, but at an offset of 0.45 (1) Å to each other. These dimers are ordered into two types of symmetry-related columns extended along theaaxis, with the mean plane of one set of dimers in a column approximately parallel to (121) and the other in a column approximately parallel to (1-21). The two planes form a dihedral angle of 85.31 (2)°, and are linkedviaC—H...O hydrogen bonds and C—H...π interactions, forming a three-dimensional framework structure.


Sign in / Sign up

Export Citation Format

Share Document