scholarly journals Structure of yeast 5-aminolaevulinic acid dehydratase complexed with the inhibitor 5-hydroxylaevulinic acid

2005 ◽  
Vol 61 (9) ◽  
pp. 1222-1226 ◽  
Author(s):  
P. T. Erskine ◽  
L. Coates ◽  
R. Newbold ◽  
A. A. Brindley ◽  
F. Stauffer ◽  
...  
1995 ◽  
Vol 305 (1) ◽  
pp. 151-158 ◽  
Author(s):  
P Spencer ◽  
P M Jordan

Experiments are described in which the individual properties of the two 5-aminolaevulinic acid (ALA) binding sites, the A-site and the P-site, of 5-aminolaevulinic acid dehydratase (ALAD) have been investigated. The ALA binding affinity at the A-site is greatly enhanced (at least 10-fold) on the binding of the catalytic metal ion (bound at the alpha-site). The nature of the catalytic metal ion, Mg2+ or Zn2+, also gave major variations in the substrate Km, P-site affinity for ALA, the effect of potassium and phosphate ions and the pH-dependence of substrate binding. Modification of the P-site by reaction of the enzyme-substrate Schiff base with NaBH4 and analysis of the reduced adduct by electro-spray mass spectrometry indicated a maximum of 1 mol of substrate incorporated/mol of subunit, correlating with a linear loss of enzyme activity. The reduced Schiff-base adduct was used to investigate substrate binding at the A-site by using rate-of-dialysis analysis. The affinity for ALA at the A-site of Mg alpha Zn beta ALAD was found to determine the Km for the reaction and was pH-dependent, with its affinity increasing from 1 mM at pH 6 to 70 microM at pH 8.5. The affinity of ALA at the P-site of Zn alpha An beta ALAD is proposed to limit the Km at pH values above 7, since the measured Kd for ALA at the A-site in 45 microM Tris, pH 8, was well below the observed Km (600 microM) under the same conditions. The amino group of the ALA molecule bound at the P-site was identified as a critical binding component for the A-site, explaining why ALA binding to ALAD is ordered, with the P-site ALA binding first. Structural requirements for ALA binding at the A- and P-sites have been identified: the P-site requires the carbonyl and carboxylate groups, whereas the A-site requires the amino, carbonyl and carboxylate groups of the substrate.


1994 ◽  
Vol 300 (2) ◽  
pp. 373-381 ◽  
Author(s):  
P Spencer ◽  
P M Jordan

Two distinct metal-binding sites, termed alpha and beta, have been characterized in 5-aminolaevulinic acid dehydratase from Escherichia coli. The alpha-site binds a Zn2+ ion that is essential for catalytic activity. This site can also utilize other metal ions able to function as a Lewis acid in the reaction mechanism, such as Mg2+ or Co2+. The beta-site is exclusively a transition-metal-ion-binding site thought to be involved in protein conformation, although a metal bound at this site only appears to be essential for activity if Mg2+ is to be bound at the alpha-site. The alpha- and beta-sites may be distinguished from one another by their different abilities to bind divalent-metal ions at different pH values. The occupancy of the beta-site with Zn2+ results in a decrease of protein fluorescence at pH 6. Occupancy of the alpha- and beta-sites with Co2+ results in u.v.-visible spectral changes. Spectroscopic studies with Co2+ have tentatively identified three cysteine residues at the beta-site and one at the alpha-site. Reaction with N-ethyl[14C]maleimide preferentially labels cysteine-130 at the alpha-site when Co2+ occupies the beta-site.


Author(s):  
Qianda Lu ◽  
Jinming Ma ◽  
Hui Rong ◽  
Jun Fan ◽  
Ye Yuan ◽  
...  

5-Aminolaevulinic acid dehydratase (ALAD), a crucial enzyme in the biosynthesis of tetrapyrrole, catalyses the condensation of two 5-aminolaevulinic acid (ALA) molecules to form porphobilinogen (PBG). The gene encoding ALAD was amplified from genomic DNA ofBacillus subtilisand the protein was overexpressed inEscherichia colistrain BL21 (DE3). The protein was purified and crystallized with an additional MGSSHHHHHHSSGLVPRGSH– tag at the N-terminus of the target protein. Diffraction-quality single crystals were obtained by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected at a resolution of 2.7 Å.


2003 ◽  
Vol 373 (3) ◽  
pp. 733-738 ◽  
Author(s):  
Peter T. ERSKINE ◽  
Leighton COATES ◽  
Danica BUTLER ◽  
James H. YOUELL ◽  
Amanda A. BRINDLEY ◽  
...  

The X-ray structure of yeast 5-aminolaevulinic acid dehydratase, in which the catalytic site of the enzyme is complexed with a putative cyclic intermediate composed of both substrate moieties, has been solved at 0.16 nm (1.6 Å) resolution. The cyclic intermediate is bound covalently to Lys263 with the amino group of the aminomethyl side chain ligated to the active-site zinc ion in a position normally occupied by a catalytic hydroxide ion. The cyclic intermediate is catalytically competent, as shown by its turnover in the presence of added substrate to form porphobilinogen. The findings, combined with those of previous studies, are consistent with a catalytic mechanism in which the C–C bond linking both substrates in the intermediate is formed before the C–N bond.


ChemInform ◽  
2010 ◽  
Vol 29 (21) ◽  
pp. no-no
Author(s):  
D. APPLETON ◽  
A. B. DUGUID ◽  
S.-K. LEE ◽  
Y.-J. HA ◽  
H.-J. HA ◽  
...  

S-Aminolaevulinic acid dehydratase catalyses the synthesis of porphobilinogen. The enzyme has a molecular mass of 285000 and is composed of eight similar subunits of molecular mass 35000. The N-terminal amino acid is acylated, and the number of peptides found on tryptic digestion equals the number of lysine and arginine residues per mass of 35000. The eight subunits are apparently arranged at the corners of a cube and therefore have dihedral (D 4 ) symmetry. The bovine liver enzyme which has been crystallized contains 4-6 atoms of zinc per mole of enzyme. The apo-enzyme obtained on prolonged hydrolysis can be reactivated by the addition of zinc or cadmium ions. The dialysed enzyme must be first treated with dithiothreitol. There are two very active SH groups in a total of 6-7-SH groups per subunit. The substrate forms a Schiff base with the e-amino group of a lysine residue. Reduction of the Schiff base with NaBH 4 should reveal the number of active sites per mole of enzyme. It appears that only four of the eight subunits form a Schiff base with the substrate indicating that the enzyme exhibits the phenomenon of either half-site reactivity or negative cooperativity. The enzyme appears to have a strong subunit-subunit interaction for an immobilized preparation remained stable for at least a month. An immobilized enzyme preparation was treated in a manner so that it dissociated into tetramers. Both the eluate and the protein still attached to the Sepharose on a column were enzymically active. The bound enzyme could not reassociate under assay conditions but still contained about 50 % of the original enzyme activity. It would seem that the enzyme is active when composed with less than eight subunits.


Sign in / Sign up

Export Citation Format

Share Document