Automated search-model discovery and preparation for structure solution by molecular replacement

2007 ◽  
Vol 63 (4) ◽  
pp. 447-457 ◽  
Author(s):  
Ronan M. Keegan ◽  
Martyn D. Winn
2021 ◽  
Author(s):  
Adam J Simpkin ◽  
Jens M H Thomas ◽  
Ronan M Keegan ◽  
Daniel J Rigden

Crystallographers have an array of search model options for structure solution by Molecular Replacement (MR). Well-established options of homologous experimental structures and regular secondary structure elements or motifs are increasingly supplemented by computational modelling. Such modelling may be carried out locally or use pre-calculated predictions retrieved from databases such as the EBI AlphaFold database. MrParse is a new pipeline to help streamline the decision process in MR by consolidating bioinformatic predictions in one place. When reflection data are provided, MrParse can rank any homologues found using eLLG which indicates the likelihood that a given search model will work in MR. In-built displays of predicted secondary structure, coiled-coil and transmembrane regions further inform the choice of MR protocol. MrParse can also identify and rank homologues in the EBI AlphaFold database, a function that will also interest other structural biologists and bioinformaticians.


1999 ◽  
Vol 55 (9) ◽  
pp. 1614-1615 ◽  
Author(s):  
R. A. P. Nagem ◽  
E. A. L. Martins ◽  
V. M. Gonçalves ◽  
R. Aparício ◽  
I. Polikarpov

The enzyme catalase (H2O2–H2O2 oxidoreductase; E.C. 11.1.6) was purified from haemolysate of human placenta and crystallized using the vapour-diffusion technique. Synchrotron-radiation diffraction data have been collected to 1.76 Å resolution. The enzyme crystallized in the space group P212121, with unit-cell dimensions a = 83.6, b = 139.4, c = 227.5 Å. A molecular-replacement solution of the structure has been obtained using beef liver catalase (PDB code 4blc) as a search model.


Author(s):  
Matthew Wilding ◽  
Colin Scott ◽  
Thomas S. Peat ◽  
Janet Newman

The NAD-dependent malonate-semialdehyde dehydrogenase KES23460 fromPseudomonassp. strain AAC makes up half of a bicistronic operon responsible for β-alanine catabolism to produce acetyl-CoA. The KES23460 protein has been heterologously expressed, purified and used to generate crystals suitable for X-ray diffraction studies. The crystals belonged to space groupP212121and diffracted X-rays to beyond 3 Å resolution using the microfocus beamline of the Australian Synchrotron. The structure was solved using molecular replacement, with a monomer from PDB entry 4zz7 as the search model.


2014 ◽  
Vol 70 (11) ◽  
pp. 1480-1484 ◽  
Author(s):  
David C. Teller ◽  
Craig A. Behnke ◽  
Kirk Pappan ◽  
Zicheng Shen ◽  
John C. Reese ◽  
...  

Rice weevils (Sitophilus oryzae) use a pectin methylesterase (EC 3.1.1.11), along with other enzymes, to digest cell walls in cereal grains. The enzyme is a right-handed β-helix protein, but is circularly permuted relative to plant and bacterial pectin methylesterases, as shown by the crystal structure determination reported here. This is the first structure of an animal pectin methylesterase. Diffraction data were collected to 1.8 Å resolution some time ago for this crystal form, but structure solution required the use of molecular-replacement techniques that have been developed and similar structures that have been deposited in the last 15 years. Comparison of the structure of the rice weevil pectin methylesterase with that fromDickeya dandantii(formerlyErwinia chrysanthemi) indicates that the reaction mechanisms are the same for the insect, plant and bacterial pectin methylesterases. The similarity of the structure of the rice weevil enzyme to theEscherichia colilipoprotein YbhC suggests that the evolutionary origin of the rice weevil enzyme was a bacterial lipoprotein, the gene for which was transferred to a primitive ancestor of modern weevils and other Curculionidae. Structural comparison of the rice weevil pectin methylesterase with plant and bacterial enzymes demonstrates that the rice weevil protein is circularly permuted relative to the plant and bacterial molecules.


2010 ◽  
Vol 66 (3) ◽  
pp. 309-313 ◽  
Author(s):  
Bjørn P. Pedersen ◽  
J. Preben Morth ◽  
Poul Nissen

An approach is presented for the structure determination of membrane proteins on the basis of poorly diffracting crystals which exploits molecular replacement for heavy-atom site identification at 6–9 Å maximum resolution and improvement of the heavy-atom-derived phases by multi-crystal averaging using quasi-isomorphous data sets. The multi-crystal averaging procedure allows real-space density averaging followed by phase combination between non-isomorphous native data sets to exploit crystal-to-crystal nonisomorphism despite the crystals belonging to the same space group. This approach has been used in the structure determination of H+-ATPase and Na+,K+-ATPase using Ca2+-ATPase models and its successful application to the Mhp1 symporter using LeuT as a search model is demonstrated.


1998 ◽  
Vol 54 (1) ◽  
pp. 86-89 ◽  
Author(s):  
Peer R. E. Mittl ◽  
Patrick Chène ◽  
Markus G. Grütter

The molecular replacement method is a powerful technique for crystal structure solution but the use of NMR structures as templates often causes problems. In this work the NMR structure of the p53 tetramerization domain has been used to solve the crystal structure by molecular replacement. Since the rotation- and translation-functions were not sufficiently clear, additional information about the symmetry of the crystal and the protein complex was used to identify correct solutions. The three-dimensional structure of residues 326–356 was subsequently refined to a final R factor of 19.1% at 1.5 Å resolution.


2015 ◽  
Vol 71 (5) ◽  
pp. 1059-1067 ◽  
Author(s):  
Markus-Frederik Bohn ◽  
Celia A. Schiffer

High-throughput crystallographic approaches require integrated software solutions to minimize the need for manual effort.REdiiiis a system that allows fully automated crystallographic structure solution by integrating existing crystallographic software into an adaptive and partly autonomous workflow engine. The program can be initiated after collecting the first frame of diffraction data and is able to perform processing, molecular-replacement phasing, chain tracing, ligand fitting and refinement without further user intervention. Preset values for each software component allow efficient progress with high-quality data and known parameters. The adaptive workflow engine can determine whether some parameters require modifications and choose alternative software strategies in case the preconfigured solution is inadequate. This integrated pipeline is targeted at providing a comprehensive and efficient approach to screening for ligand-bound co-crystal structures while minimizing repetitiveness and allowing a high-throughput scientific discovery process.


2004 ◽  
Vol 37 (1) ◽  
pp. 159-161 ◽  
Author(s):  
Nicholas M. Glykos ◽  
Michael Kokkinidis

Classical molecular replacement methods and the newer six-dimensional searches treat molecular replacement as a succession of sub-problems of reduced dimensionality. Due to their `divide-and-conquer' approach, these methods necessarily ignore (at least during their early stages) the very knowledge that a target crystal structure may comprise, for example, more than one copy of a search model, or several models of different types. An algorithm for a stochastic multi-dimensional molecular replacement search has been described previously and shown to locate solutions successfully, even in cases as complex as a 23-dimensional 4-body search. The original description of the method only dealt with a special case of molecular replacement, namely with the problem of placingncopies of only one search model in the asymmetric unit of a target crystal structure. Here a natural generalization of this algorithm is presented to deal with the full molecular replacement problem, that is, with the problem of determining the orientations and positions of a total ofncopies ofmdifferent models (withn≥m) which are assumed to be present in the asymmetric unit of a target crystal structure. The generality of this approach is illustrated through its successful application to a 17-dimensional 3-model problem involving one DNA and two protein molecules.


Sign in / Sign up

Export Citation Format

Share Document