Poly[[diaqua-μ6-succinato-di-μ5-succinato-diholmium(III)] monohydrate]

2006 ◽  
Vol 62 (7) ◽  
pp. m1620-m1622 ◽  
Author(s):  
Bin Yu ◽  
Xiao-Qing Wang ◽  
Ru-Ji Wang ◽  
Guang-Qiu Shen ◽  
De-Zhong Shen

The HoIII center in the title coordination polymer, {[Ho2(C4H4O4)3(H2O)2]·H2O} n , is nine-coordinated in a tricapped trigonal prism by eight O atoms, derived from six carboxylate groups and a water molecule. One of the independent succinate anions is located about a crystallographic center of inversion and the uncoordinated water molecule lies on a twofold axis. The crystal structure comprises edge-shared HoO9 polyhedra linked by succinate bridges, forming a three-dimensional network structure.

2009 ◽  
Vol 65 (6) ◽  
pp. m629-m629 ◽  
Author(s):  
Li-Zhen Zhao ◽  
Ping Li ◽  
Bao-Liang Cao ◽  
Seik Weng Ng

The title compound, {[Cd(C4H4O6)]·0.167H2O}n, adopts a three-dimensional network structure in which each CdIIion is chelated by two pairs of carboxylate and hydroxyl O atoms from two tartrate anions, and is additionally linked to two O atoms of two carboxylate groups that are not involved in chelation. The asymmetric unit has four independent cadmium atoms, two of which lie on special positions of 2 site symmetry. The tartrate anions all lie on general positions. All hydroxyl groups are engaged in O—H...O hydrogen-bonds, one of which is also bifurcated. The non-coordinating water molecule is situated on a site with half-occupation.


IUCrData ◽  
2017 ◽  
Vol 2 (8) ◽  
Author(s):  
R. Aarthi ◽  
A. Thiruvalluvar ◽  
C. Ramachandra Raja

In the title hydrated salt, C8H12N+·Cl−·0.5H2O, the water O atom lies on a crystallographic twofold axis. In the crystal, the cation, anion and water molecule are linked to one anotherviaC—H...Cl, O—H...Cl, N—H...O and N—H...Cl hydrogen bonds. The crystal structure is further stabilized by two weak C—H...π interactions involving the benzene ring to form a three-dimensional network.


2006 ◽  
Vol 62 (7) ◽  
pp. m1719-m1721 ◽  
Author(s):  
Luiz Everson da Silva ◽  
Antonio Carlos Joussef ◽  
Sabine Foro ◽  
Boris Schmidt

In the title compound, [Zn(C15H10FN2O2 S)2]·0.5H2O, the Zn atom has a distorted tetrahedral geometry, formed by the N atoms of the quinoline and the sulfonamide groups. The water molecule occupies a special position on a twofold axis. Intermolecular C—H...O hydrogen bonds to the sulfonyl O atoms link the molecules into a three-dimensional network.


IUCrData ◽  
2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Ioannis Tiritiris ◽  
Thomas Schleid

In the crystal structure of the hydrated double salt, Cs+·[N(CH3)4]+·[B12H12]2−·H2O, the asymmetric unit contains one caesium and one tetramethylammonium cation, one dodecahydrido-closo-dodecaborate anion and one water molecule. The Cs+cation is coordinated tetrahedrally by four [B12H12]2−clusters, with the water molecule completing the coordination sphere. The tetramethylammonium cation is surrounded distorted octahedrally by six [B12H12]2−anions. The crystal structure is stabilized by a three-dimensional network of O—H...H—B and C—H...H—B dihydrogen bonds.


2017 ◽  
Vol 73 (11) ◽  
pp. 1599-1602 ◽  
Author(s):  
Matimon Sangsawang ◽  
Kittipong Chainok ◽  
Nanthawat Wannarit

The title compound, [CdNa2(C8H4O4)2(C3H7NO)(H2O)2]nor [CdNa2(1,3-bdc)2(DMF)(H2O)2]n, is a new CdII–NaIheterobimetallic coordination polymer. The asymmetric unit consists of one CdIIatom, two NaIatoms, two 1,3-bdc ligands, two coordinated water molecules and one coordinated DMF molecule. The CdIIatom exhibits a seven-coordinate geometry, while the NaIatoms can be considered to be pentacoordinate. The metal ions and their symmetry-related equivalents are connectedviachelating–bridging carboxylate groups of the 1,3-bdc ligands to generate a three-dimensional framework. In the crystal, there are classical O—H...O hydrogen bonds involving the coordinated water molecules and the 1,3-bdc carboxylate groups and π–π stacking between the benzene rings of the 1,3-bdc ligands present within the frameworks.


2015 ◽  
Vol 71 (12) ◽  
pp. m275-m276 ◽  
Author(s):  
Waqas Sethi ◽  
Heini V. Johannesen ◽  
Thorbjørn J. Morsing ◽  
Stergios Piligkos ◽  
Høgni Weihe

The title compound, [Co2(L)2]3+·3NO3−[whereL= CH3C(CH2NHCH2CH2OH1/2)3], has been synthesized from the ligand 1,1,1-tris(2-hydroxyethylaminomethyl)ethane. The cobalt(III) dimer has an interesting and uncommon O—H...O hydrogen-bonding motif with the three bridging hydroxy H atoms each being equally disordered over two positions. In the dimeric trication, the octahedrally coordinated CoIIIatoms and the capping C atoms lie on a threefold rotation axis. The N atoms of two crystallographically independent nitrate anions also lie on threefold rotation axes. N—H...O hydrogen bonding between the complex cations and nitrate anions leads to the formation of a three-dimensional network structure. The compound is a racemic conglomerate of crystals containing either D or L molecules. The crystal used for this study is a D crystal.


Author(s):  
Graham Smith ◽  
Urs D. Wermuth

In the structure of the brucinium salt of 4-aminophenylarsonic acid (p-arsanilic acid), systematically 2,3-dimethoxy-10-oxostrychnidinium 4-aminophenylarsonate tetrahydrate, (C23H27N2O4)[As(C6H7N)O2(OH)]·4H2O, the brucinium cations form the characteristic undulating and overlapping head-to-tail layered brucine substructures packed along [010]. The arsanilate anions and the water molecules of solvation are accommodated between the layers and are linked to them through a primary cation N—H...O(anion) hydrogen bond, as well as through water O—H...O hydrogen bonds to brucinium and arsanilate ions as well as bridging water O-atom acceptors, giving an overall three-dimensional network structure.


2009 ◽  
Vol 65 (3) ◽  
pp. m118-m120
Author(s):  
Olha Sereda ◽  
Helen Stoeckli-Evans

The title coordination polymer, [Cd3Co2(CN)12(C2H8N2)4]n, has an infinite two-dimensional network structure. The asymmetric unit is composed of two crystallographically independent CdIIatoms, one of which is located on a twofold rotation axis. There are two independent ethylenediamine (en) ligands, one of which bis-chelates to the Cd atom that sits in a general position, while the other bridges this Cd atom to that sitting on the twofold axis. The Cd atom located on the twofold rotation axis is linked to four equivalent CoIIIatomsviacyanide bridges, while the Cd atom that sits in a general position is connected to three equivalent CoIIIatomsviacyanide bridges. In this way, a series of trinuclear, tetranuclear and pentanuclear macrocycles are linked to form a two-dimensional network structure lying parallel to thebcplane. In the crystal structure, these two-dimensional networks are linkedviaN—H...N hydrogen bonds involving an en NH2H atom and a cyanide N atom, leading to the formation of a three-dimensional structure. This coordination polymer is only the second example involving a cyanometallate where the en ligand is present in both chelating and bridging coordination modes.


2004 ◽  
Vol 59 (9) ◽  
pp. 992-998 ◽  
Author(s):  
Christian Näther ◽  
Andreas Beck

Reaction of silver(I) bromide with ethylenediamine (en) leads to the formation of the 1:1 compound poly[AgBr(μ2-en-N,N’)] (I). In the crystal structure the silver atoms of AgBr dimers are connected to two bridging bromine atoms and two nitrogen atoms of different en ligands. The dimers are thus connected by the ligands into layers via μ-N,N’ coordination. In the 2:1 coordination polymer poly[(AgBr)2(μ2-en-N,N’)] (II) a three-dimensional AgBr substructure occur which consists of helical AgBr chains that are connected via peripheral Ag-Br contacts into a three-dimensional network that contains large channels. The en ligands are situated in these channels bridging the Ag atoms. From solution this compound cannot be obtained as a pure phase, since compound I is always formed as the major phase. On heating the 1:1 compound I in a thermobalance the sample mass decreases slowly and several mass steps are observed, which are not fully resolved. If the reaction is stopped at 230°C, pure AgBr has formed. At 115°C only traces of compound II are found. The major phase consists of an as yet unidentified ligand poor compound.


2012 ◽  
Vol 67 (1) ◽  
pp. 1-4
Author(s):  
Dirk Mahlmeister ◽  
Elisabeth Irran

The new telluric acid adduct (RbCl)3 ・ Te(OH)6 was prepared by dissolving RbCl and Te(OH)6 in the molar ratio of 3 : 1 in deionized water at r. t. and slow evaporation of the solvent in air. The crystal structure of the colorless crystals was determined with single-crystal X-ray diffraction (trigonal space group: R3̄c (no. 167), a = 14.4392(8), c = 10.4301(16) Å , Z = 6). In (RbCl)3 ・ Te(OH)6, the rubidium atom is surrounded by five chlorine and four oxygen atoms in form of an irregular tricapped trigonal prism. Each tellurium atom is octahedrally surrounded by six oxygen atoms. The Te(OH)6 octahedra and the RbCl5O4 polyhedra are linked to a dense three-dimensional network which is additionally strengthened by hydrogen bonds.


Sign in / Sign up

Export Citation Format

Share Document