Towards a microchannel-based X-ray detector with two-dimensional spatial and time resolution and high dynamic range

2015 ◽  
Vol 22 (5) ◽  
pp. 1202-1206 ◽  
Author(s):  
Bernhard W. Adams ◽  
Anil U. Mane ◽  
Jeffrey W. Elam ◽  
Razib Obaid ◽  
Matthew Wetstein ◽  
...  

X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greater than 107events per cm2. Time-gating can be used for improved dynamic range.

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Madalena S. Kozachuk ◽  
Tsun-Kong Sham ◽  
Ronald R. Martin ◽  
Andrew J. Nelson ◽  
Ian Coulthard ◽  
...  

Author(s):  
Arundhuti Ganguly ◽  
Pieter G. Roos ◽  
Tom Simak ◽  
J. Michael Yu ◽  
Steven Freestone ◽  
...  

1998 ◽  
Vol 45 (3) ◽  
pp. 724-727 ◽  
Author(s):  
A. Kaluza ◽  
T. Ohms ◽  
C. Rente ◽  
R. Engels ◽  
R. Reinartz ◽  
...  

Author(s):  
A. Kaluza ◽  
T. Ohms ◽  
C. Rente ◽  
R. Engels ◽  
R. Reinartz ◽  
...  

1968 ◽  
Vol 1 ◽  
pp. 538-540
Author(s):  
E.M. Reeves

Extending from the present to the early part of 1969 there are three Orbiting Solar Observatories to be launched, and these will all be capable of constructing spectroheliograms of the Sun in solar emission lines of the EUV and X-ray region. The recently launched and highly successful OSO-III has obtained EUV and X-ray spectra with high-time resolution, but without spatial resolution on the solar disk. The later OSO satellites will provide spatial resolution of 1′ of arc to 30″ of arc, and will provide the basis for the extension to even higher spatial resolution in the future.The comparatively short periods covered by these satellites, coupled with a real probability of only partial success, make it particularly important to obtain the fullest possible use of the data by implementing a complementary and simultaneous series of ground-based observations.


2018 ◽  
Vol 46 (4) ◽  
pp. 20170350 ◽  
Author(s):  
Jack L. Glover ◽  
Lawrence T. Hudson ◽  
Nicholas G. Paulter

1993 ◽  
Vol 37 ◽  
pp. 145-151
Author(s):  
N. Loxley ◽  
S. Cockerton ◽  
B. K. Tanner

AbstractWe show that a very low noise, high dynamic range scintillation detector has major advantages over conventional detectors for characterization of pseudomorphic HEMT structures by high resolution X-ray diffraction. We show that the reduced background enables a second modulation period to be detected, enabling the thickness and composition to be determined independently. Using a conventional X-ray generator and diffractometer we demonstrate that, in a single scan taking only 10 seconds, we are able to obtain sufficiently good data to provide quality assurance.


Sign in / Sign up

Export Citation Format

Share Document