Microstrip X-ray detector with a very high dynamic range based on LPE-GaAs

1998 ◽  
Vol 45 (3) ◽  
pp. 724-727 ◽  
Author(s):  
A. Kaluza ◽  
T. Ohms ◽  
C. Rente ◽  
R. Engels ◽  
R. Reinartz ◽  
...  
Author(s):  
A. Kaluza ◽  
T. Ohms ◽  
C. Rente ◽  
R. Engels ◽  
R. Reinartz ◽  
...  

1984 ◽  
Vol 110 ◽  
pp. 1-5
Author(s):  
I.W.A. Browne

What does intermediate (arcsecond) scale structure tell us about the activity deep in the VLBI cores of galaxies and quasars? There are certain key areas where a knowledge of this structure is particularly relevant. One is in defining the relationships between the various classes of objects leading to unified schemes. A second is in the understanding of jet physics. For the latter it is very important to know if the material in the jets supplied from the nucleus is heavy or light, slow or fast, ejected one side at a time or symmetrically. The optimum resolution to study jet material is on the arcsecond (≡ kiloparsec) scale where very high dynamic range maps are possible and where it becomes feasible to find out something about the physical conditions in the surrounding medium from optical and X-ray observations.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Madalena S. Kozachuk ◽  
Tsun-Kong Sham ◽  
Ronald R. Martin ◽  
Andrew J. Nelson ◽  
Ian Coulthard ◽  
...  

Author(s):  
Arundhuti Ganguly ◽  
Pieter G. Roos ◽  
Tom Simak ◽  
J. Michael Yu ◽  
Steven Freestone ◽  
...  

1991 ◽  
Vol 131 ◽  
pp. 354-357
Author(s):  
Ann E. Wehrle ◽  
Stephen C. Unwin

AbstractMost VLBI images have low dynamic range because they are limited by instrumental effects such as calibration errors and poor u, v-coverage. We outline the method used to make a new image of the bright quasar 3C345 which has very high dynamic range (peak-to-noise of 5000:1) and which is limited by the thermal noise, not instrumental errors. Both the Caltech VLBI package and the NRAO AIPS package were required to manipulate the data.


2015 ◽  
Vol 22 (5) ◽  
pp. 1202-1206 ◽  
Author(s):  
Bernhard W. Adams ◽  
Anil U. Mane ◽  
Jeffrey W. Elam ◽  
Razib Obaid ◽  
Matthew Wetstein ◽  
...  

X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greater than 107events per cm2. Time-gating can be used for improved dynamic range.


Sign in / Sign up

Export Citation Format

Share Document