scholarly journals Investigation of the multiplet features of SrTiO3in X-ray absorption spectra based on configuration interaction calculations

2018 ◽  
Vol 25 (3) ◽  
pp. 777-784 ◽  
Author(s):  
M. Wu ◽  
Houlin L. Xin ◽  
J. O. Wang ◽  
X. J. Li ◽  
X. B. Yuan ◽  
...  

Synchrotron-basedL2,3-edge absorption spectra show strong sensitivities to the local electronic structure and chemical environment. However, detailed physical information cannot be extracted easily without computational aids. Here, using the experimental TiL2,3-edges absorption spectrum of SrTiO3as a fingerprint and considering full multiplet effects, calculations yield different energy parameters characterizing local ground state properties. The peak splitting and intensity ratios of theL3andL2set of peaks are carefully analyzed quantitatively, giving rise to a small hybridization energy around 1.2 eV, and the different hybridization energy values reported in the literature are further addressed. Finally, absorption spectra with different linearly polarized photons under various tetragonal crystal fields are investigated, revealing a non-linear orbital–lattice interaction, and a theoretical guidance for material engineering of SrTiO3-based thin films and heterostructures is offered. Detailed analysis of spectrum shifts with different tetragonal crystal fields suggests that theegcrystal field splitting is a necessary parameter for a thorough analysis of the spectra, even though it is not relevant for the ground state properties.

2014 ◽  
Vol 31 (3) ◽  
pp. 030301 ◽  
Author(s):  
Yan Chen ◽  
Ke-Zhi Zhang ◽  
Xiao-Liang Wang ◽  
Yong Chen

2013 ◽  
Vol 28 (16) ◽  
pp. 1350068 ◽  
Author(s):  
TUNCAY BAYRAM ◽  
A. HAKAN YILMAZ

The ground state energies, sizes and deformations of 1897 even–even nuclei with 10≤Z ≤110 have been carried out by using the Relativistic Mean Field (RMF) model. In the present calculations, the nonlinear RMF force NL3* recent refitted version of the NL3 force has been used. The BCS (Bardeen–Cooper–Schrieffer) formalism with constant gap approximation has been taken into account for pairing correlations. The predictions of RMF model for the ground state properties of some nuclei have been discussed in detail.


2013 ◽  
Author(s):  
R. Rajeswarapalanichamy ◽  
M. Santhosh ◽  
G. Sudha Priyanga ◽  
A. T. Asvini Meenaatci ◽  
S. Kanagaprabha

2005 ◽  
Vol 14 (02) ◽  
pp. 255-267 ◽  
Author(s):  
KAAN MANİSA ◽  
ÜLFET ATAV ◽  
RIZA OGUL

A Variational Monte Carlo method (VMC) is described for the evaluation of the ground state properties of nuclear matter. Equilibrium properties of symmetric nuclear matter and neutron matter are calculated by the described VMC method. The Urbana ν14 potential is used for the nucleon–nucleon interactions in the calculations. Three- and more-body interactions are included as a density dependent potential term. Total, kinetic and potential energies per particle are obtained for nuclear and neutron matter. Pressure values of nuclear and neutron matter are also calculated at various densities. The binding energy of nuclear matter is found to be -16.06 MeV at a saturation density of 0.16 fm -3. The results obtained are in good agreement with those obtained by various authors with different potentials and techniques.


Sign in / Sign up

Export Citation Format

Share Document