Comparison of hydrogen bonds and diverse weak interactions of the nitro group in 2-methyl-4-nitroanilinium nitrate, bisulfate and two hexafluoridosilicates: elementary graph-set approach

Author(s):  
Marek Daszkiewicz ◽  
Agnieszka Mielcarek

Crystal structures of (H2m4na)NO3(1), (H2m4na)HSO4(2), (H2m4na)2SiF6(3) and (H2m4na)2SiF6·2H2O (4), where 2m4na = 2-methyl-4-nitroaniline, are presented. Two layers of interactions occur in the structures, N—H...O/F hydrogen bonds and interactions with the nitro group. Although diverse, hydrogen-bonding patterns are compared with each other by means of interrelations among elementary graph-set descriptors and descriptors of hydrogen-bonding patterns. Using mathematical relations, the gradual expansion of the ring patterns was shown in the crystal structures. Parallel and perpendicular arranged nitro groups form weak π(N)NO2...π(O)NO2and π(N)NO2...ONO2interactions, respectively. The πNO2...πringinteraction has an impact to the stabilization of parallel oriented nitro groups. Generally, weak interactions constructed by the nitro group occur in the studied crystals as follows: π(N)NO2...π(O)NO2, πring...πring, C—H...O (1); π(N)NO2...π(O)NO2, π(N)NO2...ONO2(2); π(N)NO2...π(O)NO2, π(N)NO2...ONO2(3); C—H...O (4).

2007 ◽  
Vol 63 (11) ◽  
pp. o4450-o4451 ◽  
Author(s):  
Kaliyaperumal Thanigaimani ◽  
Packianathan Thomas Muthiah ◽  
Daniel E. Lynch

In the title cocrystal, C9H9N5·C6H8O2, the asymmetric unit contains one 2,4-diamino-6-phenyl-1,3,5-triazine molecule and a sorbic acid molecule. The triazine molecules are base-paired [with a graph set of R 2 2(8)] on either side via N—H...N hydrogen bonds, forming a supramolecular ribbon along the c axis. Each triazine molecule interacts with the carboxyl group of a sorbic acid molecule via N—H...O and O—H...N hydrogen bonds, generating R 2 2(8) motifs. The supramolecular ribbons are interlinked by N—H...O hydrogen bonds involving the 2-amino group of the triazine molecules and the carboxyl O atom of the sorbic acid molecule.


2015 ◽  
Vol 71 (11) ◽  
pp. 985-990 ◽  
Author(s):  
Ammasai Karthikeyan ◽  
Robert Swinton Darious ◽  
Packianathan Thomas Muthiah ◽  
Franc Perdih

Two novel cocrystals of the N(7)—H tautomeric form ofN6-benzoyladenine (BA), namelyN6-benzoyladenine–3-hydroxypyridinium-2-carboxylate (3HPA) (1/1), C12H9N5O·C6H5NO3, (I), andN6-benzoyladenine–DL-tartaric acid (TA) (1/1), C12H9N5O·C4H6O6, (II), are reported. In both cocrystals, theN6-benzoyladenine molecule exists as the N(7)—H tautomer, and this tautomeric form is stabilized by intramolecular N—H...O hydrogen bonding between the benzoyl C=O group and the N(7)—H hydrogen on the Hoogsteen site of the purine ring, forming anS(7) motif. The dihedral angle between the adenine and phenyl planes is 0.94 (8)° in (I) and 9.77 (8)° in (II). In (I), the Watson–Crick face of BA (N6—H and N1; purine numbering) interacts with the carboxylate and phenol groups of 3HPA through N—H...O and O—H...N hydrogen bonds, generating a ring-motif heterosynthon [graph setR22(6)]. However, in (II), the Hoogsteen face of BA (benzoyl O atom and N7; purine numbering) interacts with TA (hydroxy and carbonyl O atoms) through N—H...O and O—H...O hydrogen bonds, generating a different heterosynthon [graph setR22(4)]. Both crystal structures are further stabilized by π–π stacking interactions.


2014 ◽  
Vol 70 (2) ◽  
pp. 241-249 ◽  
Author(s):  
Wilhelm Maximilian Hützler ◽  
Ernst Egert

The preferred hydrogen-bonding patterns in the crystal structures of 5-propyl-2-thiouracil, C7H10N2OS, (I), 5-methoxy-2-thiouracil, C5H6N2O2S, (II), 5-methoxy-2-thiouracil–N,N-dimethylacetamide (1/1), C5H6N2O2S·C4H9NO, (IIa), 5,6-dimethyl-2-thiouracil, C6H8N2OS, (III), 5,6-dimethyl-2-thiouracil–1-methylpyrrolidin-2-one (1/1), C6H8N2OS·C5H9NO, (IIIa), 5,6-dimethyl-2-thiouracil–N,N-dimethylformamide (2/1), 2C6H8N2OS·C3H7NO, (IIIb), 5,6-dimethyl-2-thiouracil–N,N-dimethylacetamide (2/1), 2C6H8N2OS·C4H9NO, (IIIc), and 5,6-dimethyl-2-thiouracil–dimethyl sulfoxide (2/1), 2C6H8N2OS·C2H6OS, (IIId), were analysed. All eight structures containR22(8) patterns. In (II), (IIa), (III) and (IIIa), they are formed by two N—H...S hydrogen bonds, and in (I) by alternating pairs of N—H...S and N—H...O hydrogen bonds. In contrast, the structures of (IIIb), (IIIc) and (IIId) contain `mixed'R22(8) patterns with one N—H...S and one N—H...O hydrogen bond, as well asR22(8) motifs with two N—H...O hydrogen bonds.


2006 ◽  
Vol 62 (7) ◽  
pp. o2976-o2978 ◽  
Author(s):  
Kaliyaperumal Thanigaimani ◽  
Packianathan Thomas Muthiah ◽  
Daniel E. Lynch

In the title cocrystal, C6H9N3O2·C7H7NO2, the 2-amino-4,6-dimethoxypyrimidine molecule interacts with the carboxyl group of the 4-aminobenzoic acid molecule through N—H...O and O—H...N hydrogen bonds, forming a cyclic hydrogen-bonded motif [R 2 2(8)]. This motif further self-organizes through N—H...O hydrogen bonds to generate an array of six hydrogen bonds with the rings having the graph-set notation R 2 3(6), R 2 2(8), R 4 2(8), R 2 2(8) and R 2 3(6). The 4-aminobenzoic acid molecules self-assemble via N—H...O hydrogen bonds to form a supramolecular chain along the c axis.


2016 ◽  
Vol 72 (10) ◽  
pp. 720-723 ◽  
Author(s):  
Xiao-Qing Cai ◽  
Bei Tian ◽  
Jian-Nan Zhang ◽  
Zhi-Min Jin

A fixed hydrogen-bonding motif with a high probability of occurring when appropriate functional groups are involved is described as a `supramolecular hydrogen-bonding synthon'. The identification of these synthons may enable the prediction of accurate crystal structures. The rare chiral hydrogen-bonding motifR53(10) was observed previously in a cocrystal of 2,4,6-trichlorophenol, 2,4-dichlorophenol and dicyclohexylamine. In the title solvated salt, 2C4H12N+·C6H3Cl2O−·(C6H3Cl2O−·C6H4Cl2O)·2C4H8O, five components, namely twotert-butylammonium cations, one 2,4-dichlorophenol molecule, one 2,4-dichlorophenolate anion and one 2,6-dichlorophenolate anion, are bound by N—H...O and O—H...O hydrogen bonds to form a hydrogen-bonded ring, with the graph-set motifR53(10), which is further associated with two pendant tetrahydrofuran molecules by N—H...O hydrogen bonds. The hydrogen-bonded ring has internal symmetry, with a twofold axis running through the centre of the 2,6-dichlorophenolate anion, and is isostructural with a previous and related structure formed from 2,4-dichlorophenol, dicyclohexylamine and 2,4,6-trichlorophenol. In the title crystal, helical columns are built by the alignment and twisting of the chiral hydrogen-bonded rings, along and across thecaxis, and successive pairs of rings are associated with each other through C—H...π interactions. Neighbouring helical columns are inversely related and, therefore, no chirality is sustained, in contrast to the previous case.


1997 ◽  
Vol 53 (3) ◽  
pp. 521-533 ◽  
Author(s):  
P. I. Coupar ◽  
C. Glidewell ◽  
G. Ferguson

The 4,4′-bisphenols (1), X(C6H4OH)2 [a, X = nil; b, X = O; c, X = S; d, X = 502; e, X = CO; f, X = CH2; g, X = CMe2; h, X = C(CF3)2], when co-crystallized from alcoholic solutions with hexamethylenetetramine, (CH2)6N4 (HMTA), form 1:1 adducts (4a)–(h). 4,4′-Thiodiphenol–hexamethylenetetramine (1/1), (4c), C12H10O2S.C6H12N4, and 4,4′- sulfonyldiphenol–hexamethylenetetramine (1/1), (4d), C12H10O4S.C6H12N4, are orthorhombic, Pmn21, (4c) a = 15.029 (2), b = 9.7954 (8), c = 5.9817 (11) Å and (4d) a = 14.779 (2), b = 10.2558 (15), c = 5.9817 (8) Å, with Z = 2, and the structures consist of zigzag chains comprising strings of alternating bisphenol and HMTA units, each lying across mirror planes and linked by O—H...N hydrogen bonds. In addition, both (4c) and (4d) exhibit C—H...\pi(arene) hydrogen bonds with one CH2 group of the HMTA unit acting as a donor to two different arene rings; (4d) also exhibits multiple C—H...O=S hydrogen bonds with three C—H bonds in each HMTA unit acting as donors towards a single sulfone O atom. 4,4′-Isopropylidenediphenol–hexamethylenetetramine (1/1), (4g), C15H16O2.C6H12N4, is monoclinic, C2/c, a = 25.093 (6), b = 7.1742 (13), c = 23.612 (7) Å, \beta = 110.42 (2)°, with Z = 8, and again the structure is built from chains of alternating bisphenol and HMTA units linked by O—H...N hydrogen bonds, but these now form double helices around twofold rotation axes; the double helices are themselves linked into sheets by C—H...O hydrogen bonds. The trisphenol (2), CH3C(C6H4OH)3, forms three adducts (5a)–(c) with HMTA, having trisphenol:HMTA ratios of 1:2 (5a), 2:3 (5b) and 1:1 (5c). 1,1,1-Tris(4-hydroxyphenyl)ethane–hexamethylenetetramine (1/2), (5a), C20H18O3.(C6H12N4)2, is orthorhombic, P212121, a = 6.9928 (10), b = 14.0949 (15), c = 30.999 (4) Å, with Z = 4, and the trisphenol units and half the HMTA units form a triple helix around a 21 axis, in which each strand consists of alternating phenol and HMTA units, linked as usual by O—H...N hydrogen bonds. The remaining HMTA units, which are external to the triple helix, are connected to it by O—H...N hydrogen bonds and are formed into externally buttressing stacks. The triol (3), 1,3,5-C6H3(OH)3, forms a 2:3 adduct (6) with HMTA. 1,3,5-Trihydroxybenzene–hexamethylenetetramine (2/3), (6), C6H6O3.(C6H12N4)1.5, is monoclinic, C2/c, a = 23.598 (2), b = 7.136 (2), c = 19.445 (3) Å, \beta = 96.822 (11)°, with Z = 8, and the dominant structural motif consists of centrosymmetric rings containing two molecules each of (3) and HMTA, connected by O—H...N hydrogen bonds; these rings are themselves linked into a chain-of-rings by further HMTA units lying on twofold rotation axes. The hydrogen-bonding patterns are codified using the graph-set approach.


Author(s):  
Ivica Cvrtila ◽  
Vladimir Stilinović

The crystal structures of two polymorphs of a phenazine hexacyanoferrate(II) salt/cocrystal, with the formula (Hphen)3[H2Fe(CN)6][H3Fe(CN)6]·2(phen)·2H2O, are reported. The polymorphs are comprised of (Hphen)2[H2Fe(CN)6] trimers and (Hphen)[(phen)2(H2O)2][H3Fe(CN)6] hexamers connected into two-dimensional (2D) hydrogen-bonded networks through strong hydrogen bonds between the [H2Fe(CN)6]2− and [H3Fe(CN)6]− anions. The layers are further connected by hydrogen bonds, as well as through π–π stacking of phenazine moieties. Aside from the identical 2D hydrogen-bonded networks, the two polymorphs share phenazine stacks comprising both protonated and neutral phenazine molecules. On the other hand, the polymorphs differ in the conformation, placement and orientation of the hydrogen-bonded trimers and hexamers within the hydrogen-bonded networks, which leads to different packing of the hydrogen-bonded layers, as well as to different hydrogen bonding between the layers. Thus, aside from an exceptional number of symmetry-independent units (nine in total), these two polymorphs show how robust structural motifs, such as charge-assisted hydrogen bonding or π-stacking, allow for different arrangements of the supramolecular units, resulting in polymorphism.


2020 ◽  
Vol 48 (15) ◽  
pp. 8302-8319
Author(s):  
Małgorzata Katarzyna Cabaj ◽  
Paulina Maria Dominiak

Abstract We used the high resolution and accuracy of the Cambridge Structural Database (CSD) to provide detailed information regarding base pairing interactions of selected nucleobases. We searched for base pairs in which nucleobases interact with each other through two or more hydrogen bonds and form more or less planar structures. The investigated compounds were either free forms or derivatives of adenine, guanine, hypoxanthine, thymine, uracil and cytosine. We divided our findings into categories including types of pairs, protonation patterns and whether they are formed by free bases or substituted ones. We found base pair types that are exclusive to small molecule crystal structures, some that can be found only in RNA containing crystal structures and many that are native to both environments. With a few exceptions, nucleobase protonation generally followed a standard pattern governed by pKa values. The lengths of hydrogen bonds did not depend on whether the nucleobases forming a base pair were charged or not. The reasons why particular nucleobases formed base pairs in a certain way varied significantly.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1020-C1020
Author(s):  
Masood Parvez ◽  
Muhammad Bakhtiar ◽  
Muhammad Baqir ◽  
Muhammad Zia-ur-Rehman

Chalcones constitute an important class of bioactive drug targets in the pharmaceutical industry that includes anti-ulcerative drug sofalcone. In continuation of our work, the crystal structures of four closely related 1-phenyl-piperidine based chalcones will be presented. I: C19 H21NOS, MW = 311.43, T = 173(2) K, λ = 0.71073 Å, Orthorhombic, P b c a, a = 10.1045(4), b = 10.5358(4), c = 30.6337(12) Å, V = 3261.2(2) Å3, Z = 8, Dc = 1.269 Mg/m3, F (000) = 1328, R [I>2σ(I)] = 0.059. II: C18H19NOS, MW = 297.40, T = 173(2) K, λ = 1.54178 Å, Orthorhombic, P b c a, a = 8.9236(2), b = 11.0227(2), c = 30.8168(6) Å, V = 3031.21(11) Å3 Z = 8, Dc = 1.303 Mg/m3, F (000) = 1264, R [I>2σ(I)] = 0.035. III: C18H19NOS, MW = 297.40, T = 173(2) K, λ = 1.54178 Å, Orthorhombic, P b c a, a = 8.82990(10), b = 11.0061(2), c = 31.2106(5) Å, V = 3033.13(8) Å3, Z = 8, Dc = 1.303 Mg/m3, F (000) = 1264, R [I>2σ(I)] = 0.048. IV: C18H18ClNOS, MW = 331.84, T = 173(2) K, λ = 0.71073 Å, Monoclinic, P 21/c, a = 14.1037(4), b = 11.3153(3), c = 10.1290(2) Å, β = 101.1367(14)0, V = 1586.02(7) Å3, Z = 4, Dc = 1.390 Mg/m3, F (000) = 696, R [I>2σ(I)] = 0.038. The crystals of I, II and III are isomorphous. In all structures, the piperidine rings are in chair conformations, thiophene rings are essentially planar and the C=C bonds in the prop-2-en-1-one fragment adopt E-conformation. All crystal structures are devoid of any classical hydrogen bonds. However, non-classical hydrogen bonding interactions of the type C---H...O in compounds II, III and IV link the molecules into chains extended along the b-axis. Moreover, C---H...Cg interactions involving thiophene rings in I and III and benzene ring in IV and π...π interactions between benzene rings lying about inversion centers are present in II and III.


2007 ◽  
Vol 63 (5) ◽  
pp. 768-782 ◽  
Author(s):  
Peter T. A. Galek ◽  
László Fábián ◽  
W. D. Samuel Motherwell ◽  
Frank H. Allen ◽  
Neil Feeder

A new method is presented to predict which donors and acceptors form hydrogen bonds in a crystal structure, based on the statistical analysis of hydrogen bonds in the Cambridge Structural Database (CSD). The method is named the logit hydrogen-bonding propensity (LHP) model. The approach has a potential application in identifying both likely and unusual hydrogen bonding, which can help to rationalize stable and metastable crystalline forms, of relevance to drug development in the pharmaceutical industry. Whilst polymorph prediction techniques are widely used, the LHP model is knowledge-based and is not restricted by the computational issues of polymorph prediction, and as such may form a valuable precursor to polymorph screening. Model construction applies logistic regression, using training data obtained with a new survey method based on the CSD system. The survey categorizes the hydrogen bonds and extracts model parameter values using descriptive structural and chemical properties from three-dimensional organic crystal structures. LHP predictions from a fitted model are made using two-dimensional observables alone. In the initial cases analysed, the model is highly accurate, achieving ∼ 90% correct classification of both observed hydrogen bonds and non-interacting donor–acceptor pairs. Extensive statistical validation shows the LHP model to be robust across a range of small-molecule organic crystal structures.


Sign in / Sign up

Export Citation Format

Share Document