A crystallographic and thermal study of pridinol mesylate and its monohydrated solvate

Author(s):  
Pablo Gaztañaga ◽  
Ricardo Baggio ◽  
Daniel Roberto Vega

Herein are reported the crystal and molecular structures of the pridinol mesylate salt (C20H25NO+·CH3O3S−) (I) and its monohydrated solvate form (C20H25NO+·CH3O3S−·H2O) (II). A comparison of both with the already reported structure of pure pridinol [1,1-diphenyl-3-piperidino-1-propanol, C20H25NO; Tacke et al. (1980). Chem. Ber. 113, 1962–1980] is made. Molecular structures (I) and (II) are alike in bond distances and bond angles, but differ in their spatial conformation, and, more relevant still, in their hydrogen-bonding motifs. This gives rise to quite different packing schemes, in the form of simple dimers in (I) but water-mediated hydrogen-bonded chains in (II). The dehydration behaviour of form (II) is highly dependent on the heating rate, with slow rates leading to a clear endothermic dehydration step, towards anhydrous (I), with subsequent melting of this latter phase. Increased heating rates result in a more unclear behaviour ending in a structural collapse (melting of the hydrated phase), at temperatures significantly lower than the melting point of the anhydrous phase. The eventual relevance of the water link in the structure of (II) is discussed in regard to this behaviour.

1981 ◽  
Vol 34 (10) ◽  
pp. 2095 ◽  
Author(s):  
AJ Finney ◽  
MA Hitchman ◽  
CL Raston ◽  
GL Rowbottom ◽  
BW Skelton ◽  
...  

The crystal and molecular structures of the compounds [Ni(py)4(ONO)2],2py, [Ni(γmpy),(ONO)2] and [Ni(prz)4(ONO)2] are reported.�All three are trans nitrito complexes, the pyridine (py) compound containing two pyridine molecules of solvation. The aromatic rings in the first two complexes adopt 'paddle wheel' conformations with pitch angles varying between 40 and 70�. The nitrite ions are positioned so as to minimize repulsive interactions with the amines, and it seems likely that these groups bond through oxygen rather than nitrogen because this allows a lesser degree of interligand steric interference. The amine rings in [Ni(prz)4(ONO)2] are orthogonal to the plane containing the nickel and coordinated pyrazole nitrogen atoms; the nitrito groups are disordered between two inequivalent positions, each of which involves hydrogen bonding with the pyrazole NH groups. The nitrite infrared frequencies are similar to those observed for other nickel(II) nitrito complexes except that the antisymmetric NO stretching mode of one of the groups in the pyrazole complex is much lower in energy than expected, being in the range normally associated with a nitrogen-bonded or chelated nitrite group. It is suggested that this deviation may be caused by the hydrogen bonding in the complex. The electronic spectra of the compounds yield 10Dq values of 9100 and 8500 cm-1 for the nitrite ligands in [Ni(py)4(ONO)2] and Ni(prz)4(ONO)2], respectively, placing the nitrito group towards the weaker end of the spectro-chemical series.


1994 ◽  
Vol 1 (4) ◽  
pp. 321-328 ◽  
Author(s):  
Kevin B. Nolan ◽  
Leo P. Ryan ◽  
Colm J. Campbell ◽  
Patrick McArdle ◽  
Desmond Cunningham ◽  
...  

The synthesis and crystal and molecular structures of the platinum(II) complex Pt(HL)Cl where H2L is the diacid diamide –[CH2N(CH2COOH)CH2CONH2]2, a hydrolytic metabolite of an antitumour active bis(3,5-dioxopiperazin-1-yl)alkane are reported. The complex is square planar and contains HL− as a tridentate 2N (amino), O (carboxylate) donor. The metal to ligand bond distances are Pt-Cl 2.287(1) Å, Pt-O 2.002 (1) Å, Pt-Ntrans Cl 2.014(1) Å and Pt-Ntrans O 2.073 Å. There is extensive hydrogen bonding, each molecule of Pt(HL)Cl being intermolecularly hydrogen bonded to ten others giving a 3-dimensional network. There is also one intramolecular H-bond.


2021 ◽  
Vol 9 ◽  
Author(s):  
Stefan Pielsticker ◽  
Benjamin Gövert ◽  
Kentaro Umeki ◽  
Reinhold Kneer

Biomass is a complex material mainly composed of the three lignocellulosic components: cellulose, hemicellulose and lignin. The different molecular structures of the individual components result in various decomposition mechanisms during the pyrolysis process. To understand the underlying reactions in more detail, the individual components can be extracted from the biomass and can then be investigated separately. In this work, the pyrolysis kinetics of extracted and purified cellulose, hemicellulose and lignin are examined experimentally in a small-scale fluidized bed reactor (FBR) under N2 pyrolysis conditions. The FBR provides high particle heating rates (approx. 104 K/s) at medium temperatures (573–973 K) with unlimited reaction time and thus complements typically used thermogravimetric analyzers (TGA, low heating rate) and drop tube reactors (high temperature and heating rate). Based on the time-dependent gas concentrations of 22 species, the release rates of these species as well as the overall rate of volatiles released are calculated. A single first-order (SFOR) reaction model and a 2-step model combined with Arrhenius kinetics are calibrated for all three components individually. Considering FBR and additional TGA experiments, different reaction regimes with different activation energies could be identified. By using dimensionless pyrolysis numbers, limits due to reaction kinetics and heat transfer could be determined. The evaluation of the overall model performance revealed model predictions within the ±2σ standard deviation band for cellulose and hemicellulose. For lignin, only the 2-step model gave satisfying results. Modifications to the SFOR model (yield restriction to primary pyrolysis peak or the assumption of distributed reactivity) were found to be promising approaches for the description of flash pyrolysis behavior, which will be further investigated in the future.


1989 ◽  
Vol 43 ◽  
pp. 871-875 ◽  
Author(s):  
C. H. Görbitz ◽  
B. Lebech ◽  
Lars P. Christensen ◽  
Tove Thomasen ◽  
Ewa Huskowska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document