The effect of the coordination orientation of N atoms on polymeric structures: synthesis and characterization of one- and two-dimensional CuII coordination polymers based on 4-amino-3-(pyridin-2-yl)-5-[(pyridin-3-ylmethyl)sulfanyl]-1,2,4-triazole

2019 ◽  
Vol 75 (4) ◽  
pp. 443-450
Author(s):  
Guiying Zhu ◽  
Yang Lu ◽  
Guoxia Jin ◽  
Xuan Ji ◽  
Jianping Ma

Three new one- (1D) and two-dimensional (2D) CuII coordination polymers, namely poly[[bis{μ2-4-amino-3-(pyridin-2-yl)-5-[(pyridin-3-ylmethyl)sulfanyl]-1,2,4-triazole}copper(II)] bis(methanesulfonate) tetrahydrate], {[Cu(C13H12N5S)2](CH3SO3)2·4H2O} n (1), catena-poly[[copper(II)-bis{μ2-4-amino-3-(pyridin-2-yl)-5-[(pyridin-4-ylmethyl)sulfanyl]-1,2,4-triazole}] dinitrate methanol disolvate], {[Cu(C13H12N5S)2](NO3)2·2CH3OH} n (2), and catena-poly[[copper(II)-bis{μ2-4-amino-3-(pyridin-2-yl)-5-[(pyridin-4-ylmethyl)sulfanyl]-1,2,4-triazole}] bis(perchlorate) monohydrate], {[Cu(C13H12N5S)2](ClO4)2·H2O} n (3), were obtained from 4-amino-3-(pyridin-2-yl)-5-[(pyridin-3-ylmethyl)sulfanyl]-1,2,4-triazole with pyridin-3-yl terminal groups and from 4-amino-3-(pyridin-2-yl)-5-[(pyridin-4-ylmethyl)sulfanyl]-1,2,4-triazole with pyridin-4-yl terminal groups. Compound 1 displays a 2D net-like structure. The 2D layers are further linked through hydrogen bonds between methanesulfonate anions and amino groups on the framework and guest H2O molecules in the lattice to form a three-dimensional (3D) structure. Compound 2 and 3 exhibit 1D chain structures, in which the complicated hydrogen-bonding interactions play an important role in the formation of the 3D network. These experimental results indicate that the coordination orientation of the heteroatoms on the ligands has a great influence on the polymeric structures. Moreover, the selection of different counter-anions, together with the inclusion of different guest solvent molecules, would also have a great effect on the hydrogen-bonding systems in the crystal structures.

2016 ◽  
Vol 72 (12) ◽  
pp. 1718-1723 ◽  
Author(s):  
David K. Geiger ◽  
Dylan E. Parsons ◽  
Bracco A. Pagano

Poly[tetra-μ2-acetato-κ8O:O′-bis(μ2-benzene-1,2-diamine-κ2N:N′)dicadmium], [Cd2(CH3COO)4(C6H8N2)2]n, (I), and poly[[(μ2-acetato-κ2O:O′)(acetato-κ2O,O′)(μ2-benzene-1,3-diamine-κ2N:N′)cadmium] hemihydrate], {[Cd(CH3COO)2(C6H8N2)]·0.5H2O}n, (II), have two-dimensional polymeric structures in which monomeric units are joined by bridging acetate and benzenediamine ligands. Each of the CdIIions has an O4N2coordination environment. The coordination geometries of the symmetry-independent CdIIions are distorted octahedral and distorted trigonal antiprismatic in (I) and distorted antiprismatic in (II). Both compounds exhibit an intralayer hydrogen-bonding network. In addition, the water of hydration in (II) is involved in interlayer hydrogen bonding.


2013 ◽  
Vol 69 (12) ◽  
pp. 1472-1477 ◽  
Author(s):  
Graham Smith

The structures of the hydrated sodium salts of 4-chloro-3-nitrobenzoic acid {poly[aqua(μ4-4-chloro-3-nitrobenzoato)sodium(I)], [Na(C7H3ClNO4)(H2O)]n, (I)} and 2-amino-4-nitrobenzoic acid {poly[μ-aqua-aqua(μ3-2-amino-4-nitrobenzoato)sodium(I)], [Na(C7H5N2O4)(H2O)2]n, (II)}, and the hydrated potassium salt of 2-amino-4-nitrobenzoic acid {poly[μ-aqua-aqua(μ5-2-amino-4-nitrobenzoato)potassium(I)], [K(C7H5N2O4)(H2O)]n, (III)} have been determined and their complex polymeric structures described. All three structures are stabilized by intra- and intermolecular hydrogen bonding and strong π–π ring interactions. In the structure of (I), the distorted trigonal bipyrimidal NaO5coordination polyhedron comprises a monodentate water molecule and four bridging carboxylate O-atom donors, generating a two-dimensional polymeric structure lying parallel to (001). Intra-layer hydrogen-bonding associations and strong inter-ring π–π interactions are present. Structure (II) has a distorted octahedral NaO6stereochemistry, with four bridging O-atom donors, two from a single carboxylate group and two from a single nitro group and three from the two water molecules, one of which is bridging. Na centres are linked through centrosymmetric four-membered duplex water bridges and through 18-membered duplex head-to-tail ligand bridges. Similar centrosymmetric bridges are found in the structure of (III), and in both (II) and (III) strong inter-ring π–π interactions are found. A two-dimensional layered structure lying parallel to (010) is generated in (II), whereas in (III) the structure is three-dimensional. With (III), the irregular KO7coordination polyhedron comprises a doubly bridging water molecule, a single bidentate bridging carboxylate O-atom donor and three bridging O-atom donors from the two nitro groups. A three-dimensional structure is generated. These coordination polymer structures are among the few examples of metal complexes of any type with either 4-chloro-3-nitrobenzoic acid or 4-nitroanthranilic acid.


2002 ◽  
Vol 06 (06) ◽  
pp. 377-381 ◽  
Author(s):  
Margaret E. Kosal ◽  
Jun-Hong Chou ◽  
Kenneth S. Suslick

The hydrothermal assembly of a very stable porphyrin network with nanoscale cavities is described. A tightly packed and interpenetrated, linear polymeric framework was observed in the solid-state X-ray structure of freebase 5,10,15,20-tetrakis-(4-carboxyphenyl)porphyrin coordinated to calcium(II) ions. Strong hydrogen-bonding interactions between the coordination polymers form a two-dimensional network. Perpendicular bands interpenetrate generating an unusual three-dimensional box that clathrates a pyridine molecule.


2015 ◽  
Vol 68 (6) ◽  
pp. 906
Author(s):  
Zhuo-Wei Wang ◽  
Hui Zhao ◽  
Min Hu ◽  
Chun-Sen Liu

Two distinct three-dimensional (3D) CdII coordination polymers with 1,2-naphthalenedicarboxylate (ndc2–) and dipyridyl co-ligands have been synthesized under hydrothermal conditions. Interestingly, the slight difference in the two 4,4′-dipyridyl building blocks, namely, 1,2-bi(4-pyridyl)ethane (bpp) and 1,2-bi(4-pyridyl)ethene (bpe) with C–C or C=C spacers, results in the significant structural divergence of the resultant coordination polymers. Structural analysis reveals that complexes [Cd(ndc)(bpp)(H2O)]n (1) and {[Cd5(ndc)4(bpe)2(OH)2](H2O)1.5}n (2) are constructed by discrete metal–carboxylate dimeric units and metal–carboxylate chains, respectively, which are further extended by bpp or bpe linkers to form the inclined interpenetrated two-dimensional (2D)→3D network for 1 and the 3D porous framework for 2. This result reveals that the flexibility of auxiliary ligands plays an important role in the structural assemblies of coordination networks. The thermal and luminescence properties of both complexes were also investigated in solid state.


2014 ◽  
Vol 67 (12) ◽  
pp. 1871 ◽  
Author(s):  
Brendan F. Abrahams ◽  
Robert W. Elliott ◽  
Richard Robson

Coordination polymers containing tetracyanoquinodimethane (TCNQ) in its dianionic form, TCNQ–II, have been formed by combining the acid form of the dianion, TCNQH2, with divalent metal centres in the presence of chelating ligands such as 2,2′-bipyridine (bipy) and 1,10-phenanthroline (phen). When MnII or CdII is employed, two-dimensional (2D) corrugated sheet structures with the formula MII(TCNQ–II)L (M = Mn, Cd; L = bipy, phen) are obtained. In contrast, when CoII is used as the metal centre a complex three-dimensional (3D) structure of composition [CoII(TCNQ–II)(phen)] is formed. Despite the significant differences between the 2D and 3D network structures, the metal coordination geometry and the binding mode of the TCNQ dianion are very similar in all cases.


2019 ◽  
Vol 75 (5) ◽  
pp. 575-583 ◽  
Author(s):  
Yuting Bai ◽  
Meirong Han ◽  
Enxi Wu ◽  
Sisi Feng ◽  
Miaoli Zhu

Two three-dimensional (3D) CdII coordination polymers, namely poly[[di-μ-aqua-diaquabis{μ5-4,4′,4′′-[benzene-1,3,5-triyltris(oxy)]tribenzoato}tricadmium(II)] dihydrate], {[Cd3(C27H15O9)2(H2O)4]·2H2O} n , (I), and poly[[aqua{μ6-4,4′,4′′-[benzene-1,3,5-triyltris(oxy)]tribenzoato}(μ-formato)[μ-1,1′-(1,4-phenylene)bis(1H-imidazole)]dicadmium(II)] dihydrate], {[Cd2(C27H15O9)(C12H10N4)(HCOO)(H2O)]·2H2O} n , (II), have been hydrothermally synthesized from the reaction system containing Cd(NO3)2·4H2O and the flexible tripodal ligand 1,3,5-tris(4-carboxyphenoxy)benzene (H3tcpb) via tuning of the auxiliary ligand. Both complexes have been characterized by single-crystal X-ray diffraction analysis, elemental analysis, IR spectra, powder X-ray diffraction and thermogravimetric analysis. Complex (I) is a 3D framework constructed from trinuclear structural units and tcpb3− ligands in a μ5-coordination mode. The central CdII atom of the trinuclear unit is located on a crystallographic inversion centre and adopts an octahedral geometry. The metal atoms are bridged by four syn–syn carboxylate groups and two μ2-water molecules to form trinuclear [Cd3(COO)4(μ2-H2O)2] secondary building units (SBUs). These SBUs are incorporated into clusters by bridging carboxylate groups to produce pillars along the c axis. The one-dimensional inorganic pillars are connected by tcpb3− linkers in a μ5-coordination mode, thus forming a 3D network; its topology corresponds to the point symbol (42.62.82)(44.62)2(45.66.84)2. In contrast to (I), complex (II) is characterized by a 3D framework based on dinuclear cadmium SBUs, i.e. [Cd2(COO)3]. The two symmetry-independent CdII ions display different coordinated geometries, namely octahedral [CdN2O4] and monocapped octahedral [CdO7]. The dinuclear SBUs are incorporated into clusters by bridging formate groups to produce pillars along the c axis. These pillars are further bridged either by tcpb3− ligands into sheets or by 1,4-bis(imidazol-1-yl)benzene ligands into undulating layers, and finally these two-dimensional surfaces interweave, forming a 3D structure with the point symbol (4.62)(47.614). Compound (II) exhibits reversible I2 uptake of 56.8 mg g−1 with apparent changes in the visible colour and the UV–Vis and fluorescence spectra, and therefore may be regarded as a potential reagent for the capture and release of I2.


Author(s):  
Olha Sereda ◽  
Helen Stoeckli-Evans

The title compounds,catena-poly[[[bis[(R)-propane-1,2-diamine-κ2N,N′]copper(II)]-μ-cyanido-κ2N:C-[tris(cyanido-κC)(nitroso-κN)iron(III)]-μ-cyanido-κ2C:N] monohydrate], {[Cu(Lpn)2][Fe(CN)5(NO)]·H2O}n, (I), and poly[[hexa-μ-cyanido-κ12C:N-hexacyanido-κ6C-hexakis[(R)-propane-1,2-diamine-κ2N,N′]dichromium(III)tricopper(II)] pentahydrate], {[Cu(Lpn)2]3[Cr(CN)6]2·5H2O}n, (II) [where Lpn = (R)-propane-1,2-diamine, C3H10N2], are new chiral cyanide-bridged bimetallic coordination polymers. The asymmetric unit of compound (I) is composed of two independent cation–anion units of {[Cu(Lpn)2][Fe(CN)5)(NO)]} and two water molecules. The FeIIIatoms have distorted octahedral geometries, while the CuIIatoms can be considered to be pentacoordinate. In the crystal, however, the units align to form zigzag cyanide-bridged chains propagating along [101]. Hence, the CuIIatoms have distorted octahedral coordination spheres with extremely long semicoordination Cu—N(cyanido) bridging bonds. The chains are linked by O—H...N and N—H...N hydrogen bonds, forming two-dimensional networks parallel to (010), and the networks are linkedviaN—H...O and N—H...N hydrogen bonds, forming a three-dimensional framework. Compound (II) is a two-dimensional cyanide-bridged coordination polymer. The asymmetric unit is composed of two chiral {[Cu(Lpn)2][Cr(CN)6]}−anions bridged by a chiral [Cu(Lpn)2]2+cation and five water molecules of crystallization. Both the CrIIIatoms and the central CuIIatom have distorted octahedral geometries. The coordination spheres of the outer CuIIatoms of the asymmetric unit can be considered to be pentacoordinate. In the crystal, these units are bridged by long semicoordination Cu—N(cyanide) bridging bonds forming a two-dimensional network, hence these CuIIatoms now have distorted octahedral geometries. The networks, which lie parallel to (10-1), are linkedviaO—H...O, O—H...N, N—H...O and N—H...N hydrogen bonds involving all five non-coordinating water molecules, the cyanide N atoms and the NH2groups of the Lpn ligands, forming a three-dimensional framework.


2018 ◽  
Vol 71 (3) ◽  
pp. 111 ◽  
Author(s):  
Wen-Wen Zhang ◽  
Yu-Ling Wang ◽  
Ying Liu ◽  
Qing-Yan Liu

Reactions of Zn(NO3)2·6H2O with 1,2,4-triazole (Htrz) and 1,3,5-benzenetricarboxylic acid (H3BTC) or 5-sulfoisophthalic acid (5-H3SIP) afforded two coordination polymers, {[Zn5(μ3-OH)2(trz)2(BTC)2(DMF)2]·x(solvent)}n (1) and {[Zn7(trz)8(5-SIP)2(H2O)4]·4(H2O)}n (2). Compound 1 has pentanuclear [Zn5(μ3-OH)2] clusters, which are linked by the triazolate ligands to give a 2D layer. The 2D layer is further bridged by BTC3− ligands to form a 3D framework. The 3D framework of 1 has 1D channels filled by solvent molecules. Desolvated 1 shows a moderate CO2 uptake and high CO2/CH4 and CO2/N2 adsorption selectivities due to its carboxylate oxygen decorated pore environment. Compound 2 contains a rare 3D zinc-triazolate framework constructed from a pentanuclear [Zn5(trz)8] cluster wherein the five zinc atoms are arranged linearly. The 3D zinc-triazolate substructure has 1D open channels filled by 5-SIP3− ligands, which interact with the zinc-triazolate framework through Zn–O bonds, leading to a non-porous 3D structure of 2. Introduction of BTC3− into the zinc-triazolate system gave the porous structure of 1. While a variation of BTC3−, 5-SIP3− was introduced into the zinc-triazolate system yielding a non-porous structure of 2, demonstrating that the secondary ligands play an important role in the formation of the final structures.


2018 ◽  
Vol 74 (12) ◽  
pp. 1719-1724 ◽  
Author(s):  
Yimin Mao ◽  
Peter Y. Zavalij

Two ZnII-based coordination polymers (CPs) were synthesized by the hydrothermal method, using Zn(NO3)2·6H2O and furan-2,5-dicarboxylic acid (FDCA) in dimethylformamide (DMF) solvent, at 95 °C. Poly[tetrakis(dimethylazanium) [tetrakis(μ2-furan-2,5-dicarboxylato-κ2 O 2:O 5)dizinc(II)]], {(C2H8N)4[Zn2(C6H2O5)4]} n or {[DMA]4[ZnII 2(FDC)4]} n (DMA = dimethylazanium and FDC = furan-2,5-dicarboxylate), (1), was obtained with a 1:1 molar ratio of ZnII and FDCA. It crystallized in the monoclinic space group C2/c. Coordinated by ZnII ions, FDC2− ligands form 21 double-stranded helices propagating along the b axis. The helices are interconnected and extend laterally in the a direction, forming a two-dimensional (2D) sheet-like network. The 2D sheets are stacked along the c direction without interconnections. DMA cations are cocrystallized in (1) and are hydrogen bonded with carboxylate O atoms of the FDC2− ligands. The hydrogen-bonding pattern consists of R 2 2(4) and R 2 2(10) motifs alternating in a chain. Poly[bis(dimethylazanium) [bis(μ4-furan-2,5-dicarboxylato-κO 2:κO 2′:κO 5:κO 5)bis(μ3-furan-2,5-dicarboxylato-κO 2:κO 2′:κO 5)dizinc(II)] dimethylformamide 3.08-solvate], {(C2H8N)2[Zn2(C6H2O5)4]·3.08C3H7NO} n or {[DMA]2[ZnII 3(FDC)4]·3.08DMF} n , (2), was obtained with a 1:2 molar ratio of ZnII and FDCA. It crystallized in the monoclinic space group P21/c, forming a three-dimensional network. The pores are filled with DMA cations and DMF solvent molecules.


2009 ◽  
Vol 65 (3) ◽  
pp. m139-m142 ◽  
Author(s):  
Rajesh Koner ◽  
Israel Goldberg

The title compound, (5,10,15,20-tetra-4-pyridylporphyrinato)zinc(II) 1,2-dichlorobenzene disolvate, [Zn(C40H24N8)]·2C6H4Cl2, contains a clathrate-type structure. It is composed of two-dimensional square-grid coordination networks of the self-assembled porphyrin moiety, which are stacked one on top of the other in a parallel manner. The interporphyrin cavities of the overlapping networks combine into channel voids accommodated by the dichlorobenzene solvent. Molecules of the porphyrin complex are located on crystallographic inversion centres. The observed two-dimensional assembly mode of the porphyrin units represents a supramolecular isomer of the unique three-dimensional coordination frameworks of the same porphyrin building block observed earlier. The significance of this study lies in the discovery of an additional supramolecular isomer of the rarely observed structures of metalloporphyrins self-assembled directly into extended coordination polymers without the use of external ligand or metal ion auxiliaries.


Sign in / Sign up

Export Citation Format

Share Document