When solvent becomes reactant: a study of 6-aminothiocytosine derivatives

2020 ◽  
Vol 76 (10) ◽  
pp. 992-999
Author(s):  
Anita M. Grześkiewicz ◽  
Agata Ostrowska ◽  
Dmytro Borzylo ◽  
Maciej Kubicki

The dissolution of 6-aminothiocytosine in common solvents (such as methanol, dimethyl sulfoxide and dichloromethane) under alkaline conditions is shown to afford new compounds with a 6-aminothiocytosine skeleton: 2,2′-disulfanediylbis(pyrimidine-4,6-diamine) (1), C8H10N8S2, 2,2′-[methanediylbis(sulfanediyl)]bis(pyrimidine-4,6-diamine) (2), C9H12N8S2, 2-[(methoxymethyl)sulfanyl]pyrimidine-4,6-diamine (3), C6H10N4OS, and poly[(μ-4,6-diaminopyrimidine-2-sulfinato)potassium(I)] (4), [K(C4H5N4O2S)] n . The crystal architectures of these compounds are found to be strongly influenced by extensive hydrogen-bond networks, although some individual features are also observed. Specifically, 1 is characterized by very short C—H...N hydrogen bonds, 2 features apparently weak and long C—H...π, C—H...S and π–π contacts as the greatest contributors to stabilization energy, while 3 contains ribbons of molecules formed by centrosymmetric dimers of two types, and 4 is characterized by layers with principal structural units comprising distorted six-molecule rings. The intermolecular interactions in 1–4 are characterized in terms of their geometry, topology and energy, and the corresponding results are confirmed and visualized using Hirshfeld surface analysis.

Author(s):  
Amzar Ahlami Abdullah ◽  
Nur Hafiq Hanif Hassan ◽  
Suhana Arshad ◽  
Nuridayanti Che Khalib ◽  
Ibrahim Abdul Razak

In the title compound, C23H14ClFO, the enone moiety adopts anEconformation. The dihedral angle between the benzene and anthracene ring is 63.42 (8)° and an intramolecular C—H...F hydrogen bond generates anS(6) ring motif. In the crystal, molecules are arranged into centrosymmetric dimersviapairs of C—H...F hydrogen bonds. The crystal structure also features C—H...π and π–π interactions. Hirshfeld surface analysis was used to confirm the existence of intermolecular interactions.


2012 ◽  
Vol 68 (9) ◽  
pp. o341-o343 ◽  
Author(s):  
Joanna Bojarska ◽  
Waldemar Maniukiewicz ◽  
Lesław Sieroń ◽  
Andrzej Fruziński ◽  
Piotr Kopczacki ◽  
...  

The dimethyl sulfoxide hemisolvate of perindoprilat [systematic name: (1S)-2-((S)-{1-[(2S,3aS,7aS)-2-carboxyoctahydro-1H-indol-1-yl]-1-oxopropan-2-yl}azaniumyl)pentanoate dimethyl sulfoxide hemisolvate], C17H28N2O5·0.5C2H6OS, an active metabolite of perindopril, has been synthesized, structurally characterized by single-crystal X-ray diffraction and compared with its ethanol disolvate analogue [Pascardet al.(1991).J. Med. Chem.34, 663–669]. Both compounds crystallize in the orthorhombicP212121space group in the same zwitterionic form, with a protonated alanine N atom and an anionic carboxylate group at then-alkyl chain. The three structural units present in the unit cell (two zwitterions and the solvent molecule) are held together by a rich system of O—H...O, N—H...O and C—H...O hydrogen-bond contacts.


2013 ◽  
Vol 135 (47) ◽  
pp. 17919-17924 ◽  
Author(s):  
Alireza Shokri ◽  
Yanping Wang ◽  
George A. O’Doherty ◽  
Xue-Bin Wang ◽  
Steven R. Kass

2014 ◽  
Vol 70 (2) ◽  
pp. 241-249 ◽  
Author(s):  
Wilhelm Maximilian Hützler ◽  
Ernst Egert

The preferred hydrogen-bonding patterns in the crystal structures of 5-propyl-2-thiouracil, C7H10N2OS, (I), 5-methoxy-2-thiouracil, C5H6N2O2S, (II), 5-methoxy-2-thiouracil–N,N-dimethylacetamide (1/1), C5H6N2O2S·C4H9NO, (IIa), 5,6-dimethyl-2-thiouracil, C6H8N2OS, (III), 5,6-dimethyl-2-thiouracil–1-methylpyrrolidin-2-one (1/1), C6H8N2OS·C5H9NO, (IIIa), 5,6-dimethyl-2-thiouracil–N,N-dimethylformamide (2/1), 2C6H8N2OS·C3H7NO, (IIIb), 5,6-dimethyl-2-thiouracil–N,N-dimethylacetamide (2/1), 2C6H8N2OS·C4H9NO, (IIIc), and 5,6-dimethyl-2-thiouracil–dimethyl sulfoxide (2/1), 2C6H8N2OS·C2H6OS, (IIId), were analysed. All eight structures containR22(8) patterns. In (II), (IIa), (III) and (IIIa), they are formed by two N—H...S hydrogen bonds, and in (I) by alternating pairs of N—H...S and N—H...O hydrogen bonds. In contrast, the structures of (IIIb), (IIIc) and (IIId) contain `mixed'R22(8) patterns with one N—H...S and one N—H...O hydrogen bond, as well asR22(8) motifs with two N—H...O hydrogen bonds.


2015 ◽  
Vol 71 (9) ◽  
pp. 824-833 ◽  
Author(s):  
Amir Hossein Alamdar ◽  
Mehrdad Pourayoubi ◽  
Anahid Saneei ◽  
Michal Dušek ◽  
Monika Kučeráková ◽  
...  

Hirshfeld surfaces and two-dimensional fingerprint plots are used to analyse the intermolecular interactions in two new phosphorothioic triamide structures, namelyN,N′,N′′-tris(3,4-dimethylphenyl)phosphorothioic triamide acetonitrile hemisolvate, P(S)[NHC6H3-3,4-(CH3)2]3·0.5CH3CN or C24H30N3PS·0.5CH3CN, (I), andN,N′,N′′-tris(4-methylphenyl)phosphorothioic triamide–3-methylpiperidinium chloride (1/1), P(S)[NHC6H4(4-CH3)]3·[3-CH3-C5H9NH2]+·Cl−or C21H24N3PS·C6H14N+·Cl−, (II). The asymmetric unit of (I) consists of two independent phosphorothioic triamide molecules and one acetonitrile solvent molecule, whereas for (II), the asymmetric unit is composed of three components (molecule, cation and anion). In the structure of (I), the different components are organized into a six-molecule aggregate through N—H...S and N—H...N hydrogen bonds. The components of (II) are aggregated into a two-dimensional array through N—H...S and N—H...Cl hydrogen bonds. Moreover, interesting features of packing arise in this structure due to the presence of a double hydrogen-bond acceptor (the S atom of the phosphorothioic triamide molecule) and of a double hydrogen-bond donor (the N—H unit of the cation). For both (I) and (II), the full fingerprint plot of each component is asymmetric as a consequence of the presence of three fragments. These analyses reveal that H...H interactions [67.7 and 64.3% for the two symmetry-independent phosphorothioic triamide molecules of (I), 30.7% for the acetonitrile solvent of (I), 63.8% in the phosphorothioic triamide molecule of (II) and 62.9% in the 3-methylpiperidinium cation of (II)] outnumber the other contacts for all the components in both structures, except for the chloride anion of (II), which only receives the Cl...H contact. The phosphorothioic triamide molecules of both structures include unsaturated C atoms, thus presenting C...H/H...C interactions: 17.6 and 21% for the two symmetry-independent phosphorothioic triamide molecules in (I), and 22.7% for the phosphorothioic triamide molecule of (II). Furthermore, the N—H...S hydrogen bonds in both (I) and (II), and the N—H...Cl hydrogen bonds in (II), are the most prominent interactions, appearing as large red spots on the Hirshfeld surface maps. The N...H/H...N contacts in structure (I) are considerable, whereas for (II), they give a negligible contribution to the total interactions in the system.


2015 ◽  
Vol 71 (7) ◽  
pp. o453-o454 ◽  
Author(s):  
Sammer Yousuf ◽  
Huma Bano ◽  
Munira Taj Muhammad ◽  
Khalid Mohammed Khan

In the pyrazole molecule of the title solvate, C15H13BrN4O2·C2H6OS, the dihedral angle between the benzene ring and the mean plane of the dihydropyrano[2,3-c]pyrazole ring system [r.m.s deviation = 0.031 (2) Å] is 86.71 (14)°. In the crystal, the pyrazole molecules are linked by N—H...N hydrogen bonds, forming a layer parallel to (10-1). The pyrazole and dimethyl sulfoxide molecules are connected by an N—H...O hydrogen bond.


Sign in / Sign up

Export Citation Format

Share Document