scholarly journals Expression, purification, crystallization and X-ray diffraction studies of the molecular chaperone prefoldin fromHomo sapiens

2015 ◽  
Vol 71 (9) ◽  
pp. 1189-1193 ◽  
Author(s):  
Yoshiki Aikawa ◽  
Hiroshi Kida ◽  
Yuichi Nishitani ◽  
Kunio Miki

Proper protein folding is an essential process for all organisms. Prefoldin (PFD) is a molecular chaperone that assists protein folding by delivering non-native proteins to group II chaperonin. A heterohexamer of eukaryotic PFD has been shown to specifically recognize and deliver non-native actin and tubulin to chaperonin-containing TCP-1 (CCT), but the mechanism of specific recognition is still unclear. To determine its crystal structure, recombinant human PFD was reconstituted, purified and crystallized. X-ray diffraction data were collected to 4.7 Å resolution. The crystals belonged to space groupP21212, with unit-cell parametersa= 123.2,b= 152.4,c= 105.9 Å.

2017 ◽  
Vol 81 (4) ◽  
pp. 917-922
Author(s):  
Peter Elliott

AbstractThe crystal structure of the copper aluminium phosphate mineral sieleckiite, Cu3Al4(PO4)2 (OH)12·2H2O, from the Mt Oxide copper mine, Queensland, Australia was solved from single-crystal X-ray diffraction data utilizing synchrotron radiation. Sieleckiite has monoclinic rather than triclinic symmetry as previously reported and is space group C2/m with unit-cell parameters a = 11.711(2), b = 6.9233(14), c = 9.828(2) Å, β = 92.88(3)°, V = 795.8(3) Å3and Z = 2. The crystal structure, which has been refined to R1 = 0.0456 on the basis of 1186 unique reflections with Fo > 4σF, is a framework of corner-, edge- and face- sharing Cu and Al octahedra and PO4 tetrahedra.


2013 ◽  
Vol 28 (1) ◽  
pp. 13-17 ◽  
Author(s):  
F. Laufek ◽  
A. Vymazalová ◽  
D.A. Chareev ◽  
A.V. Kristavchuk ◽  
J. Drahokoupil ◽  
...  

The (Ag,Pd)22Se6 phase was synthesized from individual elements by silica glass tube technique and structurally characterized from powder X-ray diffraction data. The (Ag,Pd)22Se6 phase crystallizes in Fm$\overline3$m symmetry, unit-cell parameters: a = 12.3169(2) Å, V = 1862.55(5) Å3, Z = 4, and Dc = 10.01 g/cm3. The crystal structure of the (Ag,Pd)22Se6 phase represents a stuffed 3a.3a.3a superstructure of the Pd structure (fcc), where only 4 from 108 available octahedral holes are occupied. Its crystal structure is related to the Cr23C6 structure type.


2019 ◽  
Vol 65 (4 Jul-Aug) ◽  
pp. 360 ◽  
Author(s):  
G. E. Delgado ◽  
C. Rincón ◽  
G. Marroquin

The crystal structure of the ordered vacancy compound (OVC) Cu3In5Te9 was analyzed using powder X-ray diffraction data. Several structural models were derived from the structure of the Cu-poor Cu-In-Se compound b-Cu0.39In1.2Se2 by permuting the cations in the available site positions. The refinement of the best model by the Rietveld method in the tetragonal space group P2c (Nº 112), with unit cell parameters a = 6.1852(2) Å, c = 12.3633(9) Å, V = 472.98(4) Å3, led to Rp = 7.1 %, Rwp = 8.5 %, Rexp = 6.4 %, S = 1.3 for 162 independent reflections. This model has the following Wyckoff site atomic distribution: Cu1 in 2e (0,0,0); In1 in 2f (½,½,0), In2 in 2d (0,½,¼); Cu2-In3 in 2b (½,0,¼); in 2a (0,0,¼); Te in 8n (x,y,z).


1981 ◽  
Vol 36 (7) ◽  
pp. 833-836 ◽  
Author(s):  
Heinz-Dieter Sinnen ◽  
Hans-Uwe Schuster

AbstractIn the course of our investigations of the ternary system Rb-Au-Sn we obtained the new compound Rb4Au7Sn2. Its crystal structure has been determined by single crystal X-ray diffraction data. It crystallizes in the hexagonal (rhombohedral) space group R3̄m with unit-cell parameters a = 680.1(3) pm and c = 2909.0(7) pm, and Z = 3. The structure is similar to that of Laves-Phases of the MgCu2-type.


2021 ◽  
Vol 67 (2 Mar-Apr) ◽  
pp. 305
Author(s):  
G. E. Delgado ◽  
P. Grima-Gallardo ◽  
J. A. Aitken ◽  
H. Cabrera ◽  
J. Cisterna ◽  
...  

The crystal structure of the new CuFeInTe3 quaternary compound was studied by the Rietveld method from powder X-ray diffraction data. The CuFeInTe3 compound crystallize in the tetragonal CuFeInSe3-type structure with space group P2c (Nº 112), and unit cell parameters a = 6.1842(1) Å, c = 12.4163(2) Å, V = 474.85(1) Å3. The density of CuFeInTe3 is rx = 5.753 g cm−3. The reliability factors of the Rietveld refinement results are Rp= 5.5%, Rwp= 6.1%, Rexp= 4.7%, and S= 1.3. The powder XRD data of CuFeInTe3 are presented and the figures of merit of indexation are M20 = 79.4 and F30 = 43.3 (0.0045, 154).


Crystals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 40
Author(s):  
Sk Ali ◽  
Sven Lidin ◽  
Mats Johnsson

Single crystals of Fe0.43Mo2.56SbO9.5 were obtained by hydrothermal techniques at 230 °C. The crystal structure was determined from single crystal X-ray diffraction data. The compound crystallizes in the non-centrosymmetric space group Pc with unit cell parameters a = 4.0003(2) Å, b = 7.3355(3) Å, c = 12.6985(6) Å, β = 90°. The crystal structure comprises five crystallographically independent M atoms and one Sb3+ atom, M atoms are of two kinds of partially occupied sites Mo6+ and Fe3+. The building blocks consist of [SbO3O0.5O0.5E] octahedra (E = lone electron pair) and [(Mo/Fe)O6] octahedra. The M = (Mo, Fe) and O atoms are arranged in a distorted hexagonal 2D-net, not the Sb atoms. The distortion of the net and consequently the symmetry reduction results mainly from the location of the Sb atoms. Disorder manifests itself as a splitting of the metal sites and as a consequent shortening of the Mo–Fe distances. Six (Mo/Fe)O6 octahedra are connected to form a pseudohexagonal channel. The Sb3+ atom is displaced from the pseudo-six-fold axis.


1980 ◽  
Vol 35 (11) ◽  
pp. 1482-1483 ◽  

Abstract In the course of our investigations of the ternary systems Na-Au-Si(Ge) we obtained the new compounds NaAu3Si and NaAu3Ge. Their crystal structure has been determined from single crystal X-ray diffraction data. They crystallize in the cubic space group Pa 3 with unit cell parameters a = 891,6 pm and a = 902,1 pm, resp., and Z = 8.


2020 ◽  
Vol 84 (5) ◽  
pp. 746-752
Author(s):  
Oxana V. Karimova ◽  
Andrey A. Zolotarev ◽  
Bo S. Johanson ◽  
Tatiyana L. Evstigneeva

AbstractThe crystal structure of arsenopalladinite, Pd8As2.5Sb0.5, from the Kaarreoja River, Inari commune, Finnish Lapland, Finland, was solved to R1 = 0.0451 on the basis of single-crystal X-ray diffraction data. The mineral is triclinic, space group P$\bar{1}$. The unit-cell parameters are: a = 7.3344(7), b = 7.3870(8), c = 7.5255(7) Å, α = 98.869(8), β = 102.566(8), γ = 119.096(11)°, V = 331.19(7) Å3 and Z = 2. The crystal structure of arsenopalladinite consists of an alternation of layers made by pnictogen (As, Sb) and layers made by palladium atoms stacked along the c axis. Arsenic and (As, Sb) nets exhibit a triangular topology (A and D nets), whereas palladium layers show triangular or pentagon–triangular nets (B and C nets). The unit-cell contains 6 layers, with the ABCDCBA stacking sequence. Although arsenopalladinite shows characteristics very similar (nets of the same topology) to the closely-related mineral mertieite-II, Pd8Sb2.5As0.5, it has a different stacking sequence.


1978 ◽  
Vol 33 (10) ◽  
pp. 1077-1079 ◽  
Author(s):  
Heinz-Dieter Sinnen ◽  
Hans-Uwe Schuster

Abstract In the course of our investigation of the ternary system K-Au-Sn we obtained the new compound KAu4Sn2. Its crystal structure has been determinated from single crystal X-ray diffraction data. It crystallizes in the tetragonal space group 1̅4̅c2 with unit-cell parameters a = 884.7 and c = 817.8 pm and Z = 4. The structure is comparable to that of the Tl2Se.


2021 ◽  
pp. 1-6
Author(s):  
Mariana M. V. M. Souza ◽  
Alex Maza ◽  
Pablo V. Tuza

In the present work, LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group Pbnm (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å3, for the LaNi0.5Ti0.45Co0.05O3, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å3, for the LaNi0.45Co0.05Ti0.5O3, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å3, for the LaNi0.5Ti0.5O3.


Sign in / Sign up

Export Citation Format

Share Document