scholarly journals Multiple magnetic interactions in ordered perovskite-structure oxides

2014 ◽  
Vol 70 (a1) ◽  
pp. C981-C981
Author(s):  
Yuichi Shimakawa

Cation ordering in transition-metal oxides often drastically modifies their properties. We focus on A-and-B-site-ordered quadruple perovskite-structure oxides AA'3B2B'2O12, in which transition-metal ions are included at the A', B, and B' sites in an ordered manner. In such compounds A'-A', A'-B, A'-B', and B-B' interactions compete with each other and play important role in giving rise to unusual properties. The A-and-B-site-ordered quadruple perovskite CaCu3Fe2Sb2O12with magnetic Fe3+at the B site and nonmagnetic Sb5+at the B' site was successfully synthesized under a high-pressure and high-temperature condition. The B-site Fe3+spin sublattice adapts a tetrahedral framework and the Fe3+-Fe3+antiferromagnetic interaction causes geometrical spin frustration as seen in the double perovskite Ca2FeSbO6. With the introduction of Cu2+into the A' site, the frustration is relieved by strong antiferromagnetic A'(Cu2+)-B(Fe3+) interaction, leading to a ferrimagnetic ordering below 160 K. When B'-site Sb5+was replaced with Re5+, another A-and-B-site-ordered quadruple perovskite CaCu3Fe2Re2O12was synthesized by a high-pressure technique. The compound contains magnetic Fe3+at the B site and Re5+at the B' sites, and strong antiferromagnetic A'(Cu2+)-B'(Re5+) interaction overcomes the A'(Cu2+)-B(Fe3+) interaction, leading to a ferrimagnetism with the ferromagnetic A'(Cu2+)-B(Fe3+) spin arrangement below 550 K. More importantly, the electronic structure of CaCu3Fe2Re2O12is half metallic and the compound shows large magnetoresistance by the spin-dependent transport.

2006 ◽  
Vol 987 ◽  
Author(s):  
Viktor V. Struzhkin ◽  
Mikhail I. Eremets ◽  
Ivan M. Eremets ◽  
Jung-Fu Lin ◽  
Wolfgang Sturhahn ◽  
...  

AbstractThe strong electron correlations play a crucial role in the formation of a variety of electronic and magnetic properties of the transition metal oxides. In strongly correlated electronic materials many theoretical predictions exist on pressure-induced insulator-metal transitions, which are followed by a collapse of localized magnetic moments and by structural phase transitions [1]. The high-pressure studies provide additional degree of freedom to control the structural, electronic, optical, and magnetic properties of transition metal oxides. With the development of the high-pressure diamond-anvil-cell technique the experimental studies of such transitions are now possible with the advanced synchrotron techniques. In our studies, the iron monooxide Fe0.94O was studied under high pressures up to 200 GPa in diamond anvil cells. The single crystals enriched with Fe57 isotopes have been prepared for nuclear resonance measurements. The results of synchrotron Mössbauer spectroscopy (nuclear forward scattering -NFS), and electro-resistivity measurements suggest a complicated scenario of magnetic interactions governed by band-broadening effects.


Author(s):  
R. Ai ◽  
H.-J. Fan ◽  
L. D. Marks

It has been known for a long time that electron irradiation induces damage in maximal valence transition metal oxides such as TiO2, V2O5, and WO3, of which transition metal ions have an empty d-shell. This type of damage is excited by electronic transition and can be explained by the Knoteck-Feibelman mechanism (K-F mechanism). Although the K-F mechanism predicts that no damage should occur in transition metal oxides of which the transition metal ions have a partially filled d-shell, namely submaximal valence transition metal oxides, our recent study on ReO3 shows that submaximal valence transition metal oxides undergo damage during electron irradiation.ReO3 has a nearly cubic structure and contains a single unit in its cell: a = 3.73 Å, and α = 89°34'. TEM specimens were prepared by depositing dry powders onto a holey carbon film supported on a copper grid. Specimens were examined in Hitachi H-9000 and UHV H-9000 electron microscopes both operated at 300 keV accelerating voltage. The electron beam flux was maintained at about 10 A/cm2 during the observation.


1998 ◽  
Vol 549 ◽  
Author(s):  
H.S. Zhou ◽  
I. Honma

AbstractHighly ordered self-assembly organized silica meso-structured architectures have attracted increasing attention because these materials provide a rich source for scientific research and technological applications. This approach to meso-structured materials has been extended to non-silica oxides, especially transition-metal-oxides which might promise applications involving electron transfer or magnetic interactions. We report the syntheses of transition-metal-oxides meso-structured thin films (MSTF), such as TiO2, V2O5, Fe2O3 and Nb2O5, using a surfactant templating processing with spin coating method. X-ray diffraction patterns of the films showed that the films generally oriented in a lamellar structure. The phase transferring in V205 MSTF was also investigated.


2014 ◽  
Vol 70 (a1) ◽  
pp. C755-C755
Author(s):  
Youwen Long

ABO3-type perovskite oxides exhibit a wide variety of interesting physical properties such as superconductivity, colossal magnetoresistance, multiferroic behavior etc. For a simple ABO3 perovskite, if three quarters of the A site is replaced by a transition metal A', then the so-called A-site ordered double perovskite with the chemical formula of AA'3B4O12 can form. Since both A' and B sites accommodate transition metal ions, in addition to conventional B-B interaction, the new A'-A' and/or A'-B interaction is possible to show up, giving rise to the presence of many novel physical properties. Here we will show our recent research work on the high-pressure synthesis of several A-site ordered perovskites as well as a series of interesting physical properties like temperature- and pressure-induced intermetallic charge transfer, negative thermal expansion, magnetoelectric coupling multiferroic and so on. [1-3]


2016 ◽  
Vol 94 (15) ◽  
Author(s):  
I. Leonov ◽  
L. Pourovskii ◽  
A. Georges ◽  
I. A. Abrikosov

2004 ◽  
Vol 847 ◽  
Author(s):  
Bridget Ingham ◽  
S. V. Chong ◽  
Jeff L. Tallon

ABSTRACTLayered organic-inorganic hybrid materials based on tungsten oxide as the inorganic framework have been synthesised to include transition metal ions. The resulting materials have been characterised using a number of techniques. X-ray diffraction shows an interlayer expansion with increasing alkyl length. Infrared vibrational spectra of manganese tungstate compounds indicate the organic amine molecules are neutrally charged, and the inorganic framework is unaltered as one varies the organic intercalate. The magnetic behaviour of the materials has also been explored using a SQUID magnetometer. In the manganese tungstate hybrids an antiferromagnetic (AF) transition is observed, which decreases in temperature as the inorganic interlayer spacing is increased. A nickel tungstate hybrid sample, on the other hand, displays a ferromagnetic transition, which we attribute to a canted AF phase below 15 K. In all cases studied, the behaviour can be mapped to an effective moment (Peff) per transition metal ion, which agrees well with theoretical and literature values for other transition metal oxides.


Sign in / Sign up

Export Citation Format

Share Document