scholarly journals A new concept for sapphire single-crystal cells to study solid–gas reactions via real-time in situ neutron scattering

2019 ◽  
Vol 75 (a2) ◽  
pp. e680-e680
Author(s):  
Raphael Finger ◽  
Holger Kohlmann
2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Shan He ◽  
Nikita Joseph ◽  
Marzieh Mirzamani ◽  
Scott J. Pye ◽  
Ahmed Hussein Mohammed Al-anataki ◽  
...  

Abstract Major challenges for optimizing the benefits of fish oil on human health are improved bioavailability while overcoming the strong odor and avoiding significant oxidation of the omega-3 polyunsaturated fatty acids (PUFAs). The scalable continuous flow thin film vortex fluidic device (VFD) improves the Tween 20 encapsulation of fish oil relative to conventional homogenization processing, with the fish oil particles significantly smaller and the content of the valuable omega-3 fatty acids higher. In addition, after 14 days storage the remaining omega-3 fatty acids content was higher, from ca 31.0% for raw fish oil to ca 62.0% of freeze-dried encapsulated fish oil. The VFD mediated encapsulated fish oil was used to enrich the omega-3 fatty acid content of apple juice, as a model water-based food product, without changing its sensory values. The versatility of the VFD was further demonstrated in forming homogenous suspensions of fish oil containing water-insoluble bioactive molecules, curcumin and quercetin. We have also captured, for the first time, real-time structural changes in nanoencapsulation by installing a VFD with in in situ small angle neutron scattering. Real-time measurements afford valuable insights about self-assembly in solution.


Author(s):  
Liu Liu ◽  
Naji S. Husseini ◽  
Christopher J. Torbet ◽  
Divine P. Kumah ◽  
Roy Clarke ◽  
...  

A novel X-ray synchrotron radiation approach is described for real-time imaging of the initiation and growth of fatigue cracks during ultrasonic fatigue (f=20kHz). We report here on new insights on single crystal nickel-base superalloys gained with this approach. A portable ultrasonic fatigue instrument has been designed that can be installed at a high-brilliance X-ray beamline. With a load line and fatigue specimen configuration, this instrument produces stable fatigue crack propagation for specimens as thin as 150μm. The in situ cyclic loading/imaging system has been used initially to image real-time crystallographic fatigue and crack growth under positive mean axial stress in the turbine blade alloy CMSX-4.


2021 ◽  
Vol 54 (3) ◽  
Author(s):  
Raphael Finger ◽  
Nadine Kurtzemann ◽  
Thomas C. Hansen ◽  
Holger Kohlmann

A sapphire single-crystal gas-pressure cell without external support allowing unobstructed optical access by neutrons has been developed and optimized for elastic in situ neutron powder diffraction using hydrogen (deuterium) gas at the high-intensity two-axis diffractometer D20 at the Institut Laue-Langevin (Grenoble, France). Given a proper orientation of the single-crystal sample holder with respect to the detector, parasitic reflections from the sample holder can be avoided and the background can be kept low. Hydrogen (deuterium) gas pressures of up to 16.0 MPa at 298 K and 8.0 MPa at 655 K were tested successfully for a wall thickness of 3 mm. Heating was achieved by a two-sided laser heating system. The typical time resolution of in situ investigations of the reaction pathway of hydrogen (deuterium) uptake or release is on the order of 1 min. Detailed descriptions of all parts of the sapphire single-crystal gas-pressure cell are given, including materials information, technical drawings and instructions for use.


2022 ◽  
Vol 55 (1) ◽  
Author(s):  
Raphael Finger ◽  
Thomas C. Hansen ◽  
Holger Kohlmann

In situ neutron diffraction is an important characterization technique for the investigation of many functional materials, e.g. for hydrogen uptake and release in hydrogen storage materials. A new sapphire single-crystal gas-pressure cell for elastic neutron scattering has been developed and evaluated; it allows conditions of 298 K and 9.5 MPa hydrogen pressure and 1110 K at ambient pressure. The pressure vessel consists of a sapphire single-crystal tube of 35 mm radius and a sapphire single-crystal crucible as sample holder. Heating is realized by two 100 W diode lasers. It is optimized for the D20 diffractometer, ILL, Grenoble, France, and requires the use of a radial oscillating collimator. Its advantages over earlier sapphire single-crystal gas-pressure cells are higher maximum temperatures and lower background at low and high diffraction angles. The deuterium uptake in palladium was followed in situ for validation, proving the potential of the type-III gas-pressure cell for in situ neutron diffraction on solid–gas reactions.


Sign in / Sign up

Export Citation Format

Share Document