crystal cells
Recently Published Documents


TOTAL DOCUMENTS

731
(FIVE YEARS 57)

H-INDEX

39
(FIVE YEARS 5)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 297
Author(s):  
Chia-Yi Huang ◽  
Shih-Hung Lin

A diffraction grating of polymer-dispersed liquid crystal (PDLC) with polarization-selective characteristics is investigated. Electrically controllable gratings are produced using In-Plane Switching (IPS) electrodes. Indium tin oxide (ITO) electrodes with a stripe pattern are used to generate a horizontal electric field parallel to the substrate on a single glass substrate. It is known from the experimental results that the number of diffraction orders can be controlled by applied voltage. Except for the zeroth order, the consistently highest intensity can be obtained for every other order of diffraction, and the polarization direction of the diffraction is perpendicular to the direction of the electrode stripes. The polarization direction of the zeroth order diffraction is parallel to the direction of the electrode stripes. Therefore, it can be used as a filter for light polarization.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Urban Mur ◽  
Miha Ravnik ◽  
David Seč

AbstractShaping and steering of light beams is essential in many modern applications, ranging from optical tweezers, camera lenses, vision correction to 3D displays. However, current realisations require increasingly greater tunability and aim for lesser specificity for use in diverse applications. Here, we demonstrate tunable light beam control based on multi-layer liquid-crystal cells and external electric field, capable of extended beam shifting, steering, and expanding, using a combination of theory and full numerical modelling, both for liquid crystal orientations and the transmitted light. Specifically, by exploiting three different function-specific and tunable birefringent nematic layers, we show an effective liquid-crystal beam control device, capable of precise control of outgoing light propagation, with possible application in projectors or automotive headlamps.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 85
Author(s):  
Rumiko Yamaguchi

Liquid crystal director distributions have been numerically analyzed between asymmetric anchoring surfaces, that is, infinitely strong and very weak anchoring strength interfaces. In a hybrid aligned nematic (HAN) cell and a twisted nematic (TN) cell, HAN and TN orientations turn to a homogeneous orientation when the weak anchoring strength is lower than a critical one. Relationships between the anchoring strength and elastic constants of the liquid crystal were analyzed to be of a quasi-homogeneous orientation. The quasi-homogeneous orientation returned to the original HAN and TN orientations under voltage application. Low-driving electro-optical properties with no threshold voltage can be obtained in a quasi-homogeneous HAN cell. A unique voltage–transmission curve of 0–100–0% appeared in a quasi-homogeneous TN cell between the crossed polarizers.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1580
Author(s):  
Yi-Hong Shih ◽  
Harry Miyosi Silalahi ◽  
Ting-I Tsai ◽  
Yi-Chen Chen ◽  
Jou-Yu Su ◽  
...  

A terahertz metasurface that is imbedded into a dye-doped liquid crystal (DDLC) cell is fabricated in this work. After the metasurface-imbedded DDLC cell is irradiated with a linearly polarized pump beam, the irradiated cell is measured with a terahertz spectrometer. The irradiation of the pump beam causes the adsorption of the dye on one of the substrates of the cell, scattering incident terahertz waves and decreasing the transmittances of the terahertz metasurface at all the frequencies of its resonance spectrum. In addition, these transmittances decrease with an increase in the irradiation times of the pump beam. The adsorbed dye molecules are erased from the substrate after the cell is heated by a hot plate. The cell has similar spectra before the irradiation of the pump beam and after the heating of the hot plate. The aforementioned results reveal that the metasurface-imbedded DDLC cell is an optically tunable and thermally erasable terahertz intensity modulator. Therefore, this cell has the potential in developing intensity attenuators for terahertz imaging, frequency isolators for terahertz telecommunication, and spatial light modulators for terahertz information encryption and decryption.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7553
Author(s):  
Joanna Korec ◽  
Karol A. Stasiewicz ◽  
Katarzyna Garbat ◽  
Leszek R. Jaroszewicz

This paper is a continuation of previous work and shows the enhancement of the surface plasmon resonance effect in a tapered optical fiber device. The study investigated liquid crystal cells containing a tapered optical fiber covered with a silver nanolayer, surrounded by a low refractive index liquid crystal in terms of the properties of light propagation in the taper structure. Silver films with a thickness of d = 10 nm were deposited on the tapered waist area. Measurements were performed at room temperature; liquid crystal steering voltage U from 0 to 200 V, with and without any amplitude modulation with a frequency of f = 5 Hz, and the wavelength λ ranged from 550 to 1200 nm. A significant influence of the initial arrangement of liquid crystals molecules on light propagation was observed. Three types of liquid crystal cells—orthogonal, parallel, and twist—were considered. During the measurements, resonant peaks were obtained—the position of which can also be controlled by the type of liquid crystal cells and the steering voltage. Based on the obtained results, the best parameters, such as highest peak’s width reduction, and the highest SNR value were received for twisted cells. In addition, the present work was compared with the previous work and showed the possibility of improving properties of the manufactured probes, and consequently, the surface plasmon resonance effect. In the presented paper, the novelty is mainly focused on the used materials as well as suitable changes in applied technological parameters. In contrast to gold, silver is characterized by different optic and dielectric properties, e.g., refractive index, extension coefficient, and permittivity, which results in changes in the light propagation and the SPR wavelengths.


2021 ◽  
Author(s):  
Esteban Aguilera ◽  
Marcel G. Clerc ◽  
Valeska Zambra

Abstract Multistable systems are characterized by exhibiting domain coexistence, where each domain accounts for the different states. In the case of these systems are described by vectorial fields, domains are connected through topological defects. Vortices are one of the most frequent and studied topological defect points. Optical vortices are equally relevant for their fundamental features as beams with topological features and their applications in image processing, telecommunications, optical tweezers, and quantum information. The interaction of light beams with matter vortices in liquid crystal cells is a natural source of optical vortices. The rhythms that govern the emergence of matter vortexes due to fluctuations are not established. Here we investigate the nucleation mechanisms of the matter vortices in liquid crystal cells and establish statistical laws that govern them. Based on a stochastic amplitude equation, the law for the number of nucleated vortices as a function of anisotropy, voltage, and noise level intensity is set. Experimental observations in a nematic liquid crystal cell with homeotropic anchoring and a negative anisotropic dielectric constant under the influence of a transversal electric field show a fair agreement with the theoretical findings.


2021 ◽  
Vol 9 (11) ◽  
pp. 1229
Author(s):  
Tatiana D. Mayorova

Trichoplax adhaerens are simple animals with no nervous system, muscles or body axis. Nevertheless, Trichoplax demonstrate complex behaviors, including responses to the direction of the gravity vector. They have only six somatic cell types, and one of them, crystal cells, has been implicated in gravity reception. Multiple crystal cells are scattered near the rim of the pancake-shaped animal; each contains a cup-shaped nucleus and an intracellular crystal, which aligns its position according to the gravity force. Little is known about the development of any cell type in Trichoplax, which, in the laboratory, propagate exclusively by binary fission. Electron and light microscopy were used to investigate the stages by which crystal cells develop their mature phenotypes and distributions. Nascent crystal cells, identified by their possession of a small crystal, were located farther from the rim than mature crystal cells, indicating that crystal cells undergo displacement during maturation. They were elongated in shape and their nucleus was rounded. The crystal develops inside a vacuole flanked by multiple mitochondria, which, perhaps, supply molecules needed for the biomineralization process underlying crystal formation. This research sheds light on the development of unique cells with internal biomineralization and poses questions for further research.


2021 ◽  
pp. 118087
Author(s):  
Tatipamula Arun Kumar ◽  
Miri Gelbaor Kirzhner ◽  
Ashok Chaudhary ◽  
Matvey Klebanov ◽  
I. Abdulhalim

Author(s):  
Jae Hoon Lee ◽  
Jun-Yong Lee ◽  
Jeong-Seon Yu ◽  
Jong-Hyun Kim

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chao Yi ◽  
Lening Shen ◽  
Jie Zheng ◽  
Xiong Gong

AbstractIn the past years, piezo-conductive sensors have drawn great attention in both academic and industrial sectors. The piezo-conductive sensors made by inorganic semiconductors exhibited poor mechanical flexibility, restricting their further practical applications. In this study, we report the piezo-conductive sensors by a semiconducting polymer, poly(3,4-ethylenedioxythiophene) doped with tosylate ions (PEDOT:Tos) thin films. Systemically studies indicate that the piezo-conductive response of the PEDOT:Tos thin films is originated from the deformation of the PEDOT crystal cells and the stretched π–π distances induced by Tos. Moreover, the negative piezo-conductive effect, for the first time, is observed from PEDOT:Tos thin film under the pressure. A working mechanism is further proposed to interpret the transient from a positive to a negative piezo-conductive response within the PEDOT:Tos thin films. Our studies offer a facile route to approach effective piezo-conductive sensors based on conjugated polymers.


Sign in / Sign up

Export Citation Format

Share Document