scholarly journals Structure-mining: screening structure models by automated fitting to the atomic pair distribution function over large numbers of models

2020 ◽  
Vol 76 (3) ◽  
pp. 395-409 ◽  
Author(s):  
Long Yang ◽  
Pavol Juhás ◽  
Maxwell W. Terban ◽  
Matthew G. Tucker ◽  
Simon J. L. Billinge

A new approach is presented to obtain candidate structures from atomic pair distribution function (PDF) data in a highly automated way. It fetches, from web-based structural databases, all the structures meeting the experimenter's search criteria and performs structure refinements on them without human intervention. It supports both X-ray and neutron PDFs. Tests on various material systems show the effectiveness and robustness of the algorithm in finding the correct atomic crystal structure. It works on crystalline and nanocrystalline materials including complex oxide nanoparticles and nanowires, low-symmetry and locally distorted structures, and complicated doped and magnetic materials. This approach could greatly reduce the traditional structure searching work and enable the possibility of high-throughput real-time auto-analysis PDF experiments in the future.

2005 ◽  
Vol 220 (12/2005) ◽  
Author(s):  
Thomas Proffen ◽  
Katharine L. Page ◽  
Sylvia E. McLain ◽  
Bjørn Clausen ◽  
Timothy W. Darling ◽  
...  

2011 ◽  
Vol 84 (13) ◽  
Author(s):  
Christopher L. Farrow ◽  
Margaret Shaw ◽  
Hyunjeong Kim ◽  
Pavol Juhás ◽  
Simon J. L. Billinge

RSC Advances ◽  
2015 ◽  
Vol 5 (12) ◽  
pp. 8895-8902 ◽  
Author(s):  
E.-E. Bendeif ◽  
A. Gansmuller ◽  
K.-Y. Hsieh ◽  
S. Pillet ◽  
Th. Woike ◽  
...  

Total X-ray scattering coupled to atomic pair distribution function analysis (PDF) and solid state NMR allowed the identification and structural characterisation of isolated molecules and nanocrystals of sodium nitroprusside confined in mesoporous silica.


2018 ◽  
Vol 122 (51) ◽  
pp. 29498-29506 ◽  
Author(s):  
Soham Banerjee ◽  
Chia-Hao Liu ◽  
Jennifer D. Lee ◽  
Anton Kovyakh ◽  
Viktoria Grasmik ◽  
...  

2019 ◽  
Author(s):  
M. Mozammel Hoque ◽  
Sandra Vergara ◽  
Partha P. Das ◽  
Daniel Ugarte ◽  
Ulises Santiago ◽  
...  

Atomic pair distribution function (PDF) analysis has been widely used to investigate nanocrystalline and structurally disordered materials. Experimental PDFs retrieved from electron diffraction (ePDF) in transmission electron microscopy (TEM) represent an attractive alternative to traditional PDF obtained from synchrotron X-ray sources, when employed on minute samples. Nonetheless, the inelastic scattering produced by the large dynamical effects of electron diffraction may obscure the interpretation of ePDF. In the present work, precession electron diffraction (PED-TEM) has been employed to obtain the ePDF of two different sub-monolayer samples ––lipoic acid protected (~ 4.5 nm) and hexanethiolated(~ 4.2 nm, ~ 400-kDa core mass) gold nanoparticles­­––randomly oriented and measured at both liquid-nitrogen and room temperatures, with high dynamic-range detection of a CMOS camera. The electron diffraction data were processed to obtain ePDFs which were subsequently compared with PDF of different ideal structure-models. The results demonstrate that the PED-ePDF data is sensitive to different crystalline structures such as monocrystalline (truncated octahedra) versus multiply-twinned (decahedra, icosahedra) structuresof the face-centered cubic gold lattice. The results indicate that PED reduces the residual from 46% to 29%; in addition, the combination of PED and low temperature further reduced the residual to 23%, which is comparable to X-ray PDF analysis. Furthermore, the inclusion of PED resulted in a better estimation of the coordination number from ePDF. To the best of our knowledge, the precessed electron-beam technique (PED) has not been previously applied to nanoparticles for analysis by the ePDF method.


Sign in / Sign up

Export Citation Format

Share Document