shanghai synchrotron radiation facility
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 24)

H-INDEX

7
(FIVE YEARS 3)

2021 ◽  
Vol 28 (2) ◽  
pp. 512-517
Author(s):  
Tianxiao Sun ◽  
Xiangzhi Zhang ◽  
Zijian Xu ◽  
Yong Wang ◽  
Zhi Guo ◽  
...  

Scanning mode is a key factor for the comprehensive performance, including imaging efficiency, of scanning transmission X-ray microscopy (STXM). Herein is presented a bidirectional scanning method designed for STXM with an S-shaped moving track. In this method, artificially designed ramp waves are generated by a piezo-stage controller to control the two-dimensional scanning of the sample. The sample position information is measured using laser interferometric sensors and sent to a field-programmable gate array (FPGA) board which also acquires the X-ray signals simultaneously from the detector. Since the data recorded by the FPGA contain the real position of each scanned point, the influence of the backlash caused by the back-turning movement on the STXM image can be eliminated. By employing an adapted post-processing program, a re-meshed high-resolution STXM image can be obtained. This S-track bidirectional scanning method in fly-scan mode has been implemented on the STXM endstation at the Shanghai Synchrotron Radiation Facility (SSRF), and successfully resolved the ∼30 nm interval between the innermost strips of a Siemens star. This work removes the limitation on bidirectional scanning caused by motor backlash and vibration, and significantly improves the efficiency of STXM experiments.


2020 ◽  
Vol 27 (6) ◽  
pp. 1494-1498
Author(s):  
Fayuan Zhang ◽  
Zhipeng Sun ◽  
Yuxi Qiao ◽  
Shan Qiao

Constructing vacuum-ultraviolet beamlines at synchrotron radiation facilities with giga-electron volt storage ring results in serious heat load on the beamlines which can reduce their performance. To solve this problem, an APPLE-Knot undulator with eight magnet rows has been built at the Shanghai Synchrotron Radiation Facility and has achieved very good performance. However, its performance in vertical polarization mode is imperfect. Here, a new configuration of a magnet-merged APPLE-Knot undulator that has achieved a better performance is reported.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 798 ◽  
Author(s):  
Miao Liang ◽  
Zhijun Wang ◽  
Hai Wu ◽  
Li Yu ◽  
Bo Sun ◽  
...  

An efficient data collection method is important for microcrystals, because microcrystals are sensitive to radiation damage. Moreover, microcrystals are difficult to harvest and locate owing to refraction effects from the surface of the liquid drop or optically invisible, owing to their small size. Collecting X-ray diffraction data directly from the crystallization devices to completely eliminate the crystal harvesting step is of particular interest. To address these needs, novel microplates combining crystal growth and data collection have been designed for efficient in situ data collection and fully tested at Shanghai Synchrotron Radiation Facility (SSRF) crystallography beamlines. The design of the novel microplates fully adapts the advantage of in situ technology. Thin Kapton membranes were selected to seal the microplate for crystal growth, the crystallization plates can support hanging drop and setting drop vapor diffusion crystallization experiments. Then, the microplate was fixed on a magnetic base and mounted on the goniometer head for in situ data collection. Automatic grid scanning was applied for crystal location with a Blu-Ice data collection system and then in situ data collection was performed. The microcrystals of lysozyme were selected as the testing samples for diffraction data collection using the novel microplates. The results show that this method can achieve comparable data quality to that of the traditional method using the nylon loop. In addition, our method can efficiently and diversely perform data acquisition experiments, and be especially suitable for solving structures of multiple crystals at room temperature or cryogenic temperature.


2020 ◽  
Vol 53 (4) ◽  
pp. 1147-1153 ◽  
Author(s):  
Hongjin Wu ◽  
Yiwen Li ◽  
Guangfeng Liu ◽  
Haiguang Liu ◽  
Na Li

Small-angle X-ray scattering (SAXS) is a widely used method for investigating biological macromolecules in structural biology, providing information on macromolecular structures and dynamics in solution. Modern synchrotron SAXS beamlines are characterized as high-throughput, capable of collecting large volumes of data and thus demanding fast data processing for efficient beamline operations. This article presents a fully automated and high-throughput SAXS data analysis pipeline, SAS-cam, primarily based on the SASTBX package. Five modules are included in SAS-cam, encompassing the data analysis process from data reduction to model interpretation. The model parameters are extracted from SAXS profiles and stored in an HTML summary file, ready for online visualization using a web browser. SAS-cam can provide the user with the possibility of optimizing experimental parameters based on real-time feedback and it therefore significantly improves the efficiency of beam time. SAS-cam is installed on the BioSAXS beamline at the Shanghai Synchrotron Radiation Facility. The source code is available upon request.


2020 ◽  
Vol 27 (5) ◽  
pp. 1388-1394
Author(s):  
Z. P. Sun ◽  
Z. H. Liu ◽  
Z. T. Liu ◽  
W. L. Liu ◽  
F. Y. Zhang ◽  
...  

The vacuum ultraviolet beamline BL03U with a photon energy range from 7 eV upwards has been constructed at the 3.5 GeV Shanghai Synchrotron Radiation Facility. Equipped with an APPLE-Knot undulator, this beamline is dedicated to angle-resolved photoemission spectroscopy. An energy-resolving power of higher than 4.6 × 104 has been achieved in the photon energy range 21.6–48 eV, which is almost the same as the theoretical estimation.


Author(s):  
Anne Barbier ◽  
Jieping Xu ◽  
Jian Cui ◽  
Annelise Machefel ◽  
Christophe Mantileri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document