On the resolution function for powder diffraction with area detectors

2021 ◽  
Vol 77 (5) ◽  
pp. 497-505
Author(s):  
Dmitry Chernyshov ◽  
Vadim Dyadkin ◽  
Hermann Emerich ◽  
Gleb Valkovskiy ◽  
Charles J. McMonagle ◽  
...  

In a powder diffraction experiment the resolution function defines the instrumental contribution to the peak widths as a function of the Bragg angle. The Caglioti formula is frequently applied to model the instrumental broadening and used in structural refinement. The parameters in the Caglioti formula are linked to physically meaningful parameters for most diffraction geometries. However, this link is lost for the now very popular powder diffraction geometry using large 2D area detectors. Here we suggest a new physical model for the instrumental broadening specifically developed for powder diffraction data measured with large 2D area detectors. The model is verified using data from two synchrotron diffraction beamlines with the Pilatus2M and MAR345 detectors. Finally, a functional form is proposed to replace the Caglioti formula for this geometry in the Rietveld method and profile refinements.

2020 ◽  
Vol 9 (4) ◽  
pp. 1562-1568

The incorporation of magnesium in the synthetic apatite has been associated with the biomineralization process and osteoporosis therapy in humans and animals. β-tricalcium phosphate (β-TCP) is one of the most common bioceramics widely applied in bone cement and implants. In this work, Ca-deficient apatite (CDA) with a theoretical 0.08 Mg/(Ca+Mg) ratio was synthesized by the rapid reaction between Ca(OH)2, MgCl2.6H2O and H3PO4 at 40°C and the resultant powder calcined at 650 °C for 10h. X-ray powder diffraction analysis (XRD), in combination with the Rietveld method (Fullprof-suite), was employed for quantitative phase analysis and structural refinement. The results of XRD indicate that magnesium can substitute for calcium into a β-TCP structure inducing a reduction of the cell parameters and the compound crystallizes in the rhombohedral R3c structure, with the following unit cell constants: a = b = 10.3560 Å, c = 37.1718 Å, and cell volume V = 3452.44. The analysis indicated that the substitution of Mg2+ on the M(4) and M(5) sites were, approximately, 2.61 and 6.97 mol%, corresponding to the Ca2.72(MgIV0.07, MgV0.21)(PO4)2 stoichiometric formula and 0.09 Mg/(Ca+Mg) ratio.


2010 ◽  
Vol 25 (3) ◽  
pp. 247-252 ◽  
Author(s):  
F. Laufek ◽  
J. Návrátil

The crystal structure of skutterudite-related phase IrGe1.5Se1.5 has been refined by the Rietveld method from laboratory X-ray powder diffraction data. Refined crystallographic data for IrGe1.5Se1.5 are a=12.0890(2) Å, c=14.8796(3) Å, V=1883.23(6) Å3, space group R3 (No. 148), Z=24, and Dc=8.87 g/cm3. Its crystal structure can be derived from the ideal skutterudite structure (CoAs3), where Se and Ge atoms are ordered in layers perpendicular to the [111] direction of the original skutterudite cell. Weak distortions of the anion and cation sublattices were also observed.


2002 ◽  
Vol 17 (4) ◽  
pp. 287-289 ◽  
Author(s):  
T. Balić-Žunić

The Rietveld method can be combined with the addition method to determine the absolute quantities of the phases treated by Rietveld refinement plus the quantity of phase(s) not treated by it (amorphous or unobserved). If q is the added proportion of a defined phase already present in the sample, and a1 and a2 its relative proportions as determined by Rietveld refinement prior and after the addition, the proportion of the amorphous (untreated) phase(s) in the original sample is calculated as xo=[a2−(1−q)a1−q]/(1−q)(a2−a1). The absolute quantities of the phases treated by Rietveld refinement are then determined by a correction for the content of the amorphous phase(s), or they can be calculated directly from specific equations. The advantage of the method is that no new variables are introduced in the refinement when the added standard already is a part of the original mixture.


1995 ◽  
Vol 10 (3) ◽  
pp. 189-194 ◽  
Author(s):  
C. L. Lengauer ◽  
G. Giester

The kieserite-type solid-solution series of synthetic (Cu,Mg)SO4·H2O was investigated by TG-analysis and X-ray powder diffraction using the Rietveld method. Representatives with Cu≥20 mol% are triclinic distorted () analogous to the poitevinite (Cu,Fe)SO4·H2O compounds. Cation site ordering with preference of Cu for the more distorted M1 site was additionally proven by the structure refinement.


2009 ◽  
Vol 79-82 ◽  
pp. 593-596
Author(s):  
Feng Sun ◽  
Yan Sheng Yin

The ferroelectric ceramic BaTiO3 was synthesized at 1000 °C for 5 h. The structure of the system under study was refined on the basis of X-ray powder diffraction data using the Rietveld method. The system crystallizes in the space group P4mm(99). The refinement of instrumental and structural parameters led to reliable values for the Rp, Rwp and Rexp.We use the TOPAS software of Bruker AXS to refine this ceramic powders and show its conformation


2005 ◽  
Vol 20 (3) ◽  
pp. 203-206 ◽  
Author(s):  
M. Grzywa ◽  
M. Różycka ◽  
W. Łasocha

Potassium tetraperoxomolybdate (VI) K2[Mo(O2)4] was prepared, and its X-ray powder diffraction pattern was recorded at low temperature (258 K). The unit cell parameters were refined to a=10.7891(2) Å, α=64.925(3)°, space group R−3c (167), Z=6. The compound is isostructural with potassium tetraperoxotungstate (VI) K2[W(O2)4] (Stomberg, 1988). The sample of K2[Mo(O2)4] was characterized by analytical investigations, and the results of crystal structure refinement by Rietveld method are presented; final RP and RWP are 9.79% and 12.37%, respectively.


2016 ◽  
Vol 31 (4) ◽  
pp. 292-294 ◽  
Author(s):  
V. D. Zhuravlev ◽  
A. P. Tyutyunnik ◽  
N. I. Lobachevskaya

A polycrystalline sample of Ca4ZrGe3O12 was synthesized using the nitrate–citrate method and heated at 850–1100 °C. Structural refinement based on X-ray powder diffraction data showed that the crystal structure is of the garnet type with a cubic unit-cell parameter [a = 12.71299(3) Å] and the space group Ia$\bar 3$d. The structural formula is presented as Ca3[CaZr]octa[Ge]tetraO12.


2021 ◽  
Vol 67 (6 Nov-Dec) ◽  
Author(s):  
Mauro Quiroga Agurto ◽  
Elvira Leticia Zeballos Velásquez ◽  
Felipe Americo Reyes Navarro

Structural factors in clays influence their physical properties. Therefore, it is particularly important to understand the effects of heat treatment on the structure of the material during the ceramic process. In this work, we have analyzed clays from quarries in the Cerro de Pasco region, Peru, to evaluate their characteristics and the structural changes produced by heating, particularly in the interlaminar region. The samples were thermally treated between 150 oC and 800 oC with intervals of 50 oC. To evaluate the structural changes produced by temperature, X-ray diffraction were carried out before and after each heat treatment. The qualitative analysis of the measurements allowed to identify the mineralogical composition of the samples, finding phases of calcium montmorillonite, kaolinite, illite and quartz. The quantitative analysis by the Rietveld method found structural changes, particularly in the Ca-montmorillonite expansive clay. It was also possible to determine the decrease in the weight percentage of the kaolinite until the collapse of its structure between 450 °C and 500 °C. The illite presented greater thermal stability, with slight variations in its weight percentage during heat treatment, without compromising its structure. Although the quartz phase did not show relevant structure changes, it slightly increased its weight percentage with increasing temperature.


Sign in / Sign up

Export Citation Format

Share Document