scholarly journals Structural characterization and Hirshfeld surface analysis of a CoII complex with imidazo[1,2-a]pyridine

Author(s):  
Saikat Kumar Seth

A new mononuclear tetrahedral CoII complex, dichloridobis(imidazo[1,2-a]pyridine-κN 1)cobalt(II), [CoCl2(C7H6N2)2], has been synthesized using a bioactive imidazopyridine ligand. X-ray crystallography reveals that the solid-state structure of the title complex exhibits both C—H...Cl and π–π stacking interactions in building supramolecular assemblies. Indeed, the molecules are linked by C—H...Cl interactions into a two-dimensional framework, with finite zero-dimensional dimeric units as building blocks, whereas π–π stacking plays a crucial role in building a supramolecular layered network. An exhaustive investigation of the diverse intermolecular interactions via Hirshfeld surface analysis enables contributions to the crystal packing of the title complex to be quantified. The fingerprint plots associated with the Hirshfeld surface clearly display each significant interaction involved in the structure, by quantifying them in an effective visual manner.

Author(s):  
Mohamed El Hafi ◽  
Sanae Lahmidi ◽  
Lhoussaine El Ghayati ◽  
Tuncer Hökelek ◽  
Joel T. Mague ◽  
...  

The title compound {systematic name: (S,E)-3-[4-(furan-2-yl)-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepin-2-ylidene]-6-methyl-2H-pyran-2,4(3H)-dione}, C19H16N2O4, is constructed from a benzodiazepine ring system linked to furan and pendant dihydropyran rings, where the benzene and furan rings are oriented at a dihedral angle of 48.7 (2)°. The pyran ring is modestly non-planar [largest deviation of 0.029 (4) Å from the least-squares plane] while the tetrahydrodiazepine ring adopts a boat conformation. The rotational orientation of the pendant dihydropyran ring is partially determined by an intramolecular N—HDiazp...ODhydp (Diazp = diazepine and Dhydp = dihydropyran) hydrogen bond. In the crystal, layers of molecules parallel to the bc plane are formed by N—HDiazp...ODhydp hydrogen bonds and slipped π–π stacking interactions. The layers are connected by additional slipped π–π stacking interactions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (46.8%), H...O/O...H (23.5%) and H...C/C...H (15.8%) interactions, indicating that van der Waals interactions are the dominant forces in the crystal packing. Computational chemistry indicates that in the crystal the N—H...O hydrogen-bond energy is 57.5 kJ mol−1.


Author(s):  
Cemile Baydere ◽  
Merve Taşçı ◽  
Necmi Dege ◽  
Mustafa Arslan ◽  
Yusuf Atalay ◽  
...  

A novel chalcone, C20H20O, derived from benzylidenetetralone, was synthesized via Claissen–Schmidt condensation between tetralone and 2,4,6-trimethylbenzaldehyde. In the crystal, molecules are linked by C—H...O hydrogen bonds, producing R 2 2(20) and R 2 4(12) ring motifs. In addition, weak C—H...π and π-stacking interactions are observed. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H...H (66.0%), H...C/ C...H (22.3%), H...O/O...H (9.3%), and C...C (2.4%) interactions. Shape-index plots show π–π stacking interactions and the curvedness plots show flat surface patches characteristic of planar stacking.


Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 408 ◽  
Author(s):  
Ruo-Yan Li ◽  
Xiao-Xin An ◽  
Juan-Li Wu ◽  
You-Peng Zhang ◽  
Wen-Kui Dong

An unexpected trinuclear Co(II) complex, [Co3(L2)2(μ-OAc)2(CH3OH)2]·2CH3OH (H2L2 = 4,4′-dibromo-2,2′-[ethylenedioxybis(nitrilomethylidyne)]diphenol) constructed from a half-Salamo-based ligand (HL1 = 2-[O-(1-ethyloxyamide)]oxime-4-bromophenol) and Co(OAc)2·4H2O, has been synthesized and characterized by elemental analyses, infrared spectra (IR), UV-Vis spectra, X-ray crystallography and Hirshfeld surface analysis. The Co(II) complex contains three Co(II) atoms, two completely deprotonated (L2)2− units, two bridged acetate molecules, two coordinated methanol molecules and two crystalline methanol molecules, and finally, a three-dimensional supramolecular structure with infinite extension was formed. Interestingly, during the formation of the Co(II) complex, the ligand changed from half-Salamo-like to a symmetrical single Salamo-like ligand due to the bonding interactions of the molecules. In addition, the antimicrobial activities of HL1 and its Co(II) complex were also investigated.


2019 ◽  
Vol 75 (11) ◽  
pp. 1729-1733
Author(s):  
Sevgi Kansiz ◽  
Seher Meral ◽  
Necmi Dege ◽  
Aysen Alaman Agar ◽  
Igor O. Fritsky

In the title complex, [Cu(C18H12F6N2O4)]·0.5C6H6O2, the CuII ion has a square-planar coordination geometry, being ligated by two N and two O atoms of the tetradentate open-chain Schiff base ligand 6,6′-{(1E,1′E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[2-(trifluoromethoxy)phenol]. The crystal packing is stabilized by intramolecular O—H...O and intermolecular C—H...F, C—H...O and C—H...π hydrogen bonds. In addition, weak π–π interactions form a three-dimensional structure. Hirshfeld surface analysis and two-dimensional fingerprint plots were performed and created to analyze the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from F...H/H...F (25.7%), H...H (23.5%) and C...H/H...C (12.6%) interactions.


2020 ◽  
Vol 44 (34) ◽  
pp. 14592-14603 ◽  
Author(s):  
Murtaza Madni ◽  
Muhammad Naeem Ahmed ◽  
Muhammad Hafeez ◽  
Muhammad Ashfaq ◽  
Muhammad Nawaz Tahir ◽  
...  

Two different π–π stacking modes are described, studied and characterized in the crystal structures of 4,5-dihydropyrazolyl–thiazole–coumarin hybrids, including a partial aliphatic ring.


2018 ◽  
Vol 74 (11) ◽  
pp. 1536-1539
Author(s):  
Sevgi Kansiz ◽  
Irina A. Golenya ◽  
Necmi Dege

The reaction of NiCl2 with fumaric acid and isonicotinamide in a basic solution produces the title complex, [Ni(C6H6N2O)2(H2O)4](C4H2O4). The nickel(II) ion of the complex cation and the fumarate anion are each located on an inversion centre. The NiII ion is coordinated octahedrally by four water O atoms and two N atoms of isonicotinamide molecules. The fumarate anion is linked to neighbouring complex cations via Owater—H...Ofumarate hydrogen bonds. In the crystal, the complex cations are further linked by O—H...O, N—H...O and C—H...O hydrogen bonds, forming a three-dimensional supramolecular architecture. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular interactions present in the crystal and indicate that the most important contributions for the crystal packing are from H...O/O...H (41.8%), H...H (35.3%) and H...C/C...H (10.2%) interactions.


2020 ◽  
Vol 76 (10) ◽  
pp. 1624-1628
Author(s):  
Hela Ferjani

A new 0D organic–inorganic hybrid material bis[1-(prop-2-en-1-yl)-1H-imidazol-3-ium] hexachloridostannate(IV), (C6H9N2)2[SnCl6], has been prepared and characterized by single-crystal X-ray diffraction, Hirshfeld surface analysis and UV–visible spectroscopy. The structure consists of isolated [SnCl6]2− octahedral anions separated by layers of organic 1-(prop-2-en-1-yl)-1H-imidazol-3-ium cations. The 1-(prop-2-en-1-yl) fragment in the organic cation exhibits disorder over two sets of atomic sites having occupancies of 0.512 (9) and 0.488 (9). The crystal packing of the title compound is established by intermolecular N/C–H...Cl hydrogen bond and π– π stacking interactions. Hirshfeld surface analysis employing three-dimensional molecular surface contours and two-dimensional fingerprint plots has been used to analyse the intermolecular interactions present in the structure. The optical properties of the crystal were studied using UV–visible absorption spectroscopy, showing one intense band at 208 nm, which is attributed to π–π* transitions in the cations.


2018 ◽  
Vol 74 (11) ◽  
pp. 1648-1652 ◽  
Author(s):  
Nadeem Abad ◽  
Youssef Ramli ◽  
Tuncer Hökelek ◽  
Nada Kheira Sebbar ◽  
Joel T. Mague ◽  
...  

The molecule of the title compound, C16H17N5O3, is build up from two fused six-membered rings linked to a 1,2,3-triazole ring, which is attached to an ethyl azido-acetate group. The dihydroqinoxalinone portion is planar to within 0.0512 (12) Å and is oriented at a dihedral angle of 87.83 (5)° with respect to the pendant triazole ring. In the crystal, a combination of intermolecular C—H...O and C—H...N hydrogen bonds together with slipped π-stacking [centroid–centroid distance = 3.7772 (12) Å] and C—H...π (ring) interactions lead to the formation of chains extending along the c-axis direction. Additional C—H...O hydrogen bonds link these chains into layers parallel to the bc plane and the layers are tied together by complementary π-stacking [centroid–centroid distance = 3.5444 (12) Å] interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (44.5%), H...O/O...H (18.8%), H...N/N...H (17.0%) and H...C/C...H (10.4%) interactions.


Sign in / Sign up

Export Citation Format

Share Document