scholarly journals Template or ligand? Different structural behaviours of aromatic amines in combination with zincophosphite networks

2018 ◽  
Vol 74 (10) ◽  
pp. 1411-1416 ◽  
Author(s):  
William Holmes ◽  
David B. Cordes ◽  
Alexandra M. Z. Slawin ◽  
William T. A. Harrison

The solution-mediated syntheses and crystal structures of catena-poly[bis(2-amino-3-hydroxypyridinium) [zinc-di-μ-phosphonato] dihydrate], {(C5H7N2O)[Zn(HPO3)2]·2H2O} n , (I), and poly[(benzene-1,2-diamine)(μ5-phosphonato)zinc], [Zn(HPO3)(C6H8N2)] n , (II) are described. The extended structure of (I) features [010] anionic chains of vertex-sharing ZnO4 tetrahedra and HPO3 pseudopyramids; these chains are characterized by disorder over major [occupancy 0.7962 (13)] and minor [0.2038 (13)] components, which can be superimposed on each other by a nominal translational shift. The 2-amino-3-hydroxypyridinium cations and water molecules of crystallization interact with the ZnPO chains by way of numerous O—H...O and N—H...O hydrogen bonds. The structure of (II) features a direct Zn—N bond to the neutral 1,2-diaminobenzene species as part of ZnO3N tetrahedra as well as HPO3 pseudopyramids. The Zn- and P-centred groupings are linked through their O-atom vertices into infinite (010) sheets and the structure is consolidated by N—H...O hydrogen bonds and N—H...π interactions. The crystal of (I) chosen for data collection was found to be an inversion twin in a 0.56 (2):0.44 (2) domain ratio.

Author(s):  
Chihiro Kachi-Terajima ◽  
Norihisa Kimura

The title lanthanide complexes, [Ln(DAPBH2)(CH3OH)(H2O)3]Cl3·2CH3OH [Ln III = Tb and Dy; DAPBH2 = 2,6-diacetylpyridine bis(benzoylhydrazone), C23H21N5O2], are isotypic. The central lanthanide ions are nine-coordinate, being ligated by three N and two O atoms from the pentadentate DAPBH2 ligand, and four O atoms from the coordinated methanol molecule and three coordinated water molecules. The coordination geometry of the lanthanide ion is a distorted capped square antiprism. In the crystals, the various components are linked by O—H...Cl, N—H...Cl and O—H...O hydrogen bonds, forming three-dimensional supramolecular frameworks. Within the frameworks, there are C—H...Cl and C—H...O hydrogen bonds and offset π–π interactions (intercentroid distance ca 3.81 Å).


2012 ◽  
Vol 68 (6) ◽  
pp. m829-m829
Author(s):  
Lining Yang ◽  
Yanxiang Zhi ◽  
Jiahui Hei ◽  
Yanqing Miao

The asymmetric unit of the title compound, [Mn(C6H6N4)2(H2O)2](C8H4O4), contains one-half each of the centrosymmetric cation and anion. The MnII atom is coordinated by four N atoms [Mn—N = 2.2168 (14) and 2.2407 (14) Å] from two 2,2′-biimidazole ligands and two water molecules [Mn—O = 2.2521 (14) Å] in a distorted octahedral geometry. Intermolecular N—H...O and O—H...O hydrogen bonds consolidate the crystal packing, which also exhibits π–π interactions between five-membered rings, with a centroid–centroid distance of 3.409 (2) Å.


2017 ◽  
Vol 73 (10) ◽  
pp. 1483-1487
Author(s):  
P. Sivakumar ◽  
S. Israel ◽  
G. Chakkaravarthi

The title salt (I), C6H8N+·C20H17O8−, comprises a 2-methylpyridinium cation and a 2,3-bis(4-methylbenzoyloxy)succinate mono-anion while the salt (II), 2C6H8N+·2C20H17O8−·5H2O, consists of a pair of 4-methylpyridinium cations and 2,3-bis(4-methylbenzoyloxy)succinate mono-anions and five water molecules of solvation in the asymmetric unit. In (I), the dihedral angle between the aromatic rings of the anion is 40.41 (15)°, comparing with 43.0 (3) and 85.7 (2)° in the conformationally dissimilar anion molecules in (II). The pyridine ring of the cation in (I) is inclined at 23.64 (16) and 42.69 (17)° to the two benzene moieties of the anion. In (II), these comparative values are 4.7 (3), 43.5 (3)° and 43.5 (3), 73.1 (3)° for the two associated cation and anion pairs. The crystal packing of (I) is stabilized by inter-ionic N—H...O, O—H...O and C—H...O hydrogen bonds as well as weak C—H...π interactions, linking the ions into infinite chains along [100]. In the crystal packing of (II), the anions and cations are also linked by N—H...O and O—H...O hydrogen bonds involving also the water molecules, giving a two-dimensional network across (001). The crystal structure is also stabilized by weak C—H...O and C—H...π interactions.


IUCrData ◽  
2016 ◽  
Vol 1 (10) ◽  
Author(s):  
S. Naveen ◽  
Seranthimata Samshuddin ◽  
Manuel Rodrigues ◽  
Dandavathi Arunkumar ◽  
N. K. Lokanath ◽  
...  

In the title hydrated hydrazine compound, C12H17N3O·H2O, the C=N bond adopts an E conformation. In the crystal, water molecules bridge the hydrazine molecules, via N—H...O and O—H...O hydrogen bonds, forming sheets parallel to the bc plane. There are C—H...π interactions present within the sheets, and further C—H...π interactions link the sheets to form a three-dimensional structure.


2016 ◽  
Vol 72 (10) ◽  
pp. 1412-1416
Author(s):  
Monserrat Alfonso ◽  
Helen Stoeckli-Evans

The title isotypic complexes, bis[μ-5,6-bis(pyridin-2-yl)pyrazine-2,3-dicarboxylato]-κ4N1,O2,N6:O3;κ4O3:N1,O2,N6-bis[diaquamanganese(II)] tetrahydrate, [Mn2(C16H8N4O4)2(H2O)4]·4H2O, (I), and bis[μ-5,6-bis(pyridin-2-yl)pyrazine-2,3-dicarboxylato]-κ4N1,O2,N6:O3;κ4O3:N1,O2,N6-bis[diaquairon(II)] tetrahydrate, [Fe2(C16H8N4O4)2(H2O)4]·4H2O, (II), are, respectively, the manganese(II) and iron(II) complexes of the ligand 5,6-bis(pyridin-2-yl)-pyrazine-2,3-dicarboxylic acid. The complete molecule of each complex is generated by inversion symmetry. Each metal ion is coordinated by a pyrazine N atom, a pyridine N atom, two carboxylate O atoms, one of which is bridging, and two water O atoms. The metal atoms haveMN2O4coordination geometries and the complexes have a cage-like structure. In the crystals of both compounds, the complexes are linked by O—H...O and O—H...N hydrogen bonds involving the coordinating water molecules, forming chains along [100]. These chains are linked by O—H...O hydrogen bonds involving the non-coordinating water molecules, forming layers parallel to (011). The layers are linked by pairs of C—H...O hydrogen bonds and offset π–π interactions, so forming a hydrogen-bonded three-dimensional framework.


2019 ◽  
Vol 234 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Ligia R. Gomes ◽  
John N. Low ◽  
Nathasha R. de L. Correira ◽  
Thais C.M. Noguiera ◽  
Alessandra C. Pinheiro ◽  
...  

Abstract The crystal structures of four azines, namely 1-3-bis(4-methoxyphenyl)-2,3-diaza-1,4-butadiene, 1, 1,3-bis(2,3-dimethoxyphenyl)-2,3-diaza-1,4-butadiene, 2, 1,3-bis(2-hydroxy-3-methoxyphenyl)-2,3-diaza-1,4-butadiene, 3, and 1,3-bis(2-hydroxy-4-methoxyphenyl)-2,3-diaza-1,4-butadiene, 4, are reported. Molecules of 3 and 4, and both independent molecules of 2, Mol A and Mol B, possess inversion centers. The central C=N–N=C units in each molecule is planar with an (E,E) conformation. The intermolecular interactions found in the four compounds are C–H···O, C–H–N, C–H---π and π---π interactions. However, there is no consistent set of intermolecular interactions for the four compounds. Compound, 1, has a two-dimensional undulating sheet structure, generated from C–H···O and C–H···N intermolecular hydrogen bonds. The only recognized intermolecular interaction in 2 is a C–H···O hydrogen bond, which results in a zig-zag chain of alternating molecules, Mol A and Mol B. While 3 forms a puckered sheet of molecules, solely via C–H···π interactions, its isomeric compound, 4, has a more elaborate three-dimensional structure generated from a combination of C–H···O hydrogen bonds, C–H···π and π···π interactions. The findings in this study, based on both PLATON and Hirshfeld approaches, for the four representative compounds match well the reported structural findings in the literature of related compounds, which are based solely on geometric parameters.


2020 ◽  
Vol 76 (4) ◽  
pp. 367-374
Author(s):  
Aleksandra Bocian ◽  
Adam Gorczyński ◽  
Dawid Marcinkowski ◽  
Grzegorz Dutkiewicz ◽  
Violetta Patroniak ◽  
...  

The intermolecular interactions in the structures of a series of Schiff base ligands have been thoroughly studied. These ligands can be obtained in different forms, namely, as the free base 2-[(2E)-2-(1H-imidazol-4-ylmethylidene)-1-methylhydrazinyl]pyridine, C10H11N5, 1, the hydrates 2-[(2E)-2-(1H-imidazol-2-ylmethylidene)-1-methylhydrazinyl]-1H-benzimidazole monohydrate, C12H12N6·H2O, 2, and 2-{(2E)-1-methyl-2-[(1-methyl-1H-imidazol-2-yl)methylidene]hydrazinyl}-1H-benzimidazole 1.25-hydrate, C13H14N6·1.25H2O, 3, the monocationic hydrate 5-{(1E)-[2-(1H-1,3-benzodiazol-2-yl)-2-methylhydrazinylidene]methyl}-1H-imidazol-3-ium trifluoromethanesulfonate monohydrate, C12H13N6 +·CF3O3S−·H2O, 5, and the dicationic 2-{(2E)-1-methyl-2-[(1H-imidazol-3-ium-2-yl)methylidene]hydrazinyl}pyridinium bis(trifluoromethanesulfonate), C10H13N5 2+·2CF3O3S−, 6. The connection between the forms and the preferred intermolecular interactions is described and further studied by means of the calculation of the interaction energies between the neutral and charged components of the crystal structures. These studies show that, in general, the most important contribution to the stabilization energy of the crystal is provided by π–π interactions, especially between charged ligands, while the details of the crystal architecture are influenced by directional interactions, especially relatively strong hydrogen bonds. In one of the structures, a very interesting example of the nontypical F...O interaction was found and its length, 2.859 (2) Å, is one of the shortest ever reported.


2016 ◽  
Vol 72 (12) ◽  
pp. 1771-1775
Author(s):  
Yohei Tabuchi ◽  
Kazuma Gotoh ◽  
Hiroyuki Ishida

The crystal structures of title hydrogen-bonded co-crystals, 2C12H16O3·C12H10N2, (I), and 2C13H18O3·C12H10N2, (II), have been determined at 93 K. In (I), the asymmetric unit consists of one 4-(n-pentyloxy)benzoic acid molecule and one half-molecule of (E)-1,2-bis(pyridin-4-yl)ethene, which lies about an inversion centre. The asymmetric unit of (II) comprises two crystallographically independent 4-(n-hexyloxy)benzoic acid molecules and one 1,2-bis(pyridin-4-yl)ethene molecule. In each crystal, the acid and base components are linked by O—H...N hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. The 2:1 units are linkedviaC—H...π and π–π interactions [centroid–centroid distances of 3.661 (2) and 3.909 (2) Å for (I), and 3.546 (2)–3.725 (4) Å for (II)], forming column structures. In (II), the base molecule is orientationally disordered over two sets of sites approximately around the N...N molecular axis, with an occupancy ratio of 0.647 (4):0.353 (4), and the average structure of the 2:1 unit adopts nearly pseudo-C2symmetry. Both compounds show liquid-crystal behaviour.


2012 ◽  
Vol 68 (10) ◽  
pp. o408-o412 ◽  
Author(s):  
Ashokkumar Subashini ◽  
Kandasamy Ramamurthi ◽  
Helen Stoeckli-Evans

The 4-chloro- [C14H11ClN2O2, (I)], 4-bromo- [C14H10BrN2O2, (II)] and 4-diethylamino- [C18H21N3O2, (III)] derivatives of benzylidene-4-hydroxybenzohydrazide, all crystallize in the same space group (P21/c), (I) and (II) also being isomorphous. In all three compounds, the conformation about the C=N bond isE. The molecules of (I) and (II) are relatively planar, with dihedral angles between the two benzene rings of 5.75 (12) and 9.81 (17)°, respectively. In (III), however, the same angle is 77.27 (9)°. In the crystal structures of (I) and (II), two-dimensional slab-like networks extending in theaandcdirections are formedviaN—H...O and O—H...O hydrogen bonds. The molecules stack head-to-tailviaπ–π interactions involving the aromatic rings [centroid–centroid distance = 3.7622 (14) Å in (I) and 3.8021 (19) Å in (II)]. In (III), undulating two-dimensional networks extending in thebandcdirections are formedviaN—H...O and O—H...O hydrogen bonds. The molecules stack head-to-headviaπ–π interactions involving inversion-related benzene rings [centroid–centroid distances = 3.6977 (12) and 3.8368 (11) Å].


Sign in / Sign up

Export Citation Format

Share Document