scholarly journals Crystal structures of two hydrogen-bonded compounds of chloranilic acid–ethyleneurea (1/1) and chloranilic acid–hydantoin (1/2)

2018 ◽  
Vol 74 (12) ◽  
pp. 1727-1730 ◽  
Author(s):  
Kazuma Gotoh ◽  
Hiroyuki Ishida

The structures of the hydrogen-bonded 1:1 co-crystal of chloranilic acid (systematic name: 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) with ethyleneurea (systematic name: imidazolidin-2-one), C6H2Cl2O4·C3H6N2O, (I), and the 1:2 co-crystal of chloranilic acid with hydantoin (systematic name: imidazolidine-2,4-dione), C6H2Cl2O4·2C3H4N2O2, (II), have been determined at 180 K. In the crystals of both compounds, the base molecules are in the lactam form and no acid–base interaction involving H-atom transfer is observed. The asymmetric unit of (I) consists of two independent half-molecules of chloranilic acid, with each of the acid molecules lying about an inversion centre, and one ethyleneurea molecule. The asymmetric unit of (II) consists of one half-molecule of chloranilic acid, which lies about an inversion centre, and one hydantoin molecule. In the crystal of (I), the acid and base molecules are linked via O—H...O and N—H...O hydrogen bonds, forming an undulating sheet structure parallel to the ab plane. In (II), the base molecules form an inversion dimer via a pair of N—H...O hydrogen bonds, and the base dimers are further linked through another N—H...O hydrogen bond into a layer structure parallel to (\overline{1}01). The acid molecule and the base molecule are linked via an O—H...O hydrogen bond.

2017 ◽  
Vol 73 (10) ◽  
pp. 1546-1550 ◽  
Author(s):  
Kazuma Gotoh ◽  
Hiroyuki Ishida

The crystal structures of the 1:2 compounds of chloranilic acid (systematic name: 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) with 2-pyridone, 3-hydroxypyridine and 4-hyroxypyridine, namely, bis(2-pyridone) chloranilic acid, 2C5H5NO·C6H2Cl2O4, (I), bis(3-hydroxypyridinium) chloranilate, 2C5H6NO+·C6Cl2O42−, (II), and bis(4-hydroxypyridinium) chloranilate, 2C5H6NO+·C6Cl2O42−, (III), have been determined at 120 K. In the crystal of (I), the base molecule is in the lactam form and no acid–base interaction involving H-atom transfer is observed. The acid molecule lies on an inversion centre and the asymmetric unit consists of one half-molecule of chloranilic acid and one 2-pyridone molecule, which are linkedviaa short O—H...O hydrogen bond. 2-Pyridone molecules form a head-to-head dimerviaa pair of N—H...O hydrogen bonds, resulting in a tape structure along [201]. In the crystals of (II) and (III), acid–base interactions involving H-atom transfer are observed and the divalent cations lie on an inversion centre. The asymmetric unit of (II) consists of one half of a chloranilate anion and one 3-hydroxypyridinium cation, while that of (III) comprises two independent halves of anions and two 4-hydroxypyridinium cations. The primary intermolecular interaction in (II) is a bifurcated O—H...(O,O) hydrogen bond between the cation and the anion. The hydrogen-bonded units are further linkedviaN—H...O hydrogen bonds, forming a layer parallel to thebcplane. In (III), one anion is surrounded by four cationsviaO—H...O and C—H...O hydrogen bonds, while the other is surrounded by four cationsviaN—H...O and C—H...Cl hydrogen bonds. These interactions link the cations and the anions into a layer parallel to (301).


Author(s):  
Kazuma Gotoh ◽  
Hiroyuki Ishida

In each of the title isomeric compounds, C9H7.3N·C7H3.7ClNO4, (I), and C9H8N·C7H3ClNO4, (II), of isoquinoline with 3-chloro-2-nitrobenzoic acid and 4-chloro-2-nitrobenzoic acid, the two components are linked by a short hydrogen bond between a base N atom and a carboxy O atom. In the hydrogen-bonded unit of (I), the H atom is disordered over two positions with N and O site occupancies of 0.30 (3) and 0.70 (3), respectively, while in (II), an acid–base interaction involving H-atom transfer occurs and the H atom is located at the N site. In the crystal of (I), the acid–base units are connected through C—H...O hydrogen bonds into a tape structure along theb-axis direction. Inversion-related adjacent tapes are further linked through π–π interactions [centroid–centroid distances = 3.6389 (7)–3.7501 (7) Å], forming a layer parallel to (001). In the crystal of (II), the acid–base units are connected through C—H...O hydrogen bonds into a ladder structure along thea-axis direction. The ladders are further linked by another C—H...O hydrogen bond into a layer parallel to (001).


2002 ◽  
Vol 57 (8) ◽  
pp. 914-921 ◽  
Author(s):  
P. G. Jones ◽  
J. Ossowski ◽  
P. Kus

N,N′-Dibutyl-terephthaldiamide (1), N,N′-dihexyl-terephthaldiamide (2), N,N′-di(tert-butyl)- terephthaldiamide (3), N,N,N′,N′-tetrabutyl-terephthaldiamide (4), 1,1′-terephthaloylbis- pyrrolidine (5), 1,1′-terephthaloyl-bis-piperidine (6), and 4,4′-terephthaloyl-bis-morpholine (7) have been synthesised and physicochemically characterised. The X-ray structure determinations reveal imposed inversion symmetry for compounds 1-6; compound 3 has two independent molecules with inversion symmetry in the asymmetric unit. Compounds 1-3 form classical hydrogen bonds of the type N-H···O=C, leading to a ribbon-like arrangement of molecules (1 and 2) or a layer structure (3). Compound 3 also displays a very short C-H···O interaction, a type of hydrogen bond that is also observed in compounds 4-7, which lack classical donors; thereby compounds 4-6 form layer structures and 7 a complex threedimensional network.


Author(s):  
Thomas Gelbrich ◽  
Denise Rossi ◽  
Ulrich J. Griesser

Polymorph (Ia) of eldoral [5-ethyl-5-(piperidin-1-yl)barbituric acid or 5-ethyl-5-(piperidin-1-yl)-1,3-diazinane-2,4,6-trione], C11H17N3O3, displays a hydrogen-bonded layer structure parallel to (100). The piperidine N atom and the barbiturate carbonyl group in the 2-position are utilized in N—H...N and N—H...O=C hydrogen bonds, respectively. The structure of polymorph (Ib) contains pseudosymmetry elements. The two independent molecules of (Ib) are connectedviaN—H...O=C(4/6-position) and N—H...N(piperidine) hydrogen bonds to give a chain structure in the [100] direction. The hydrogen-bonded layers, parallel to (010), formed in the salt diethylammonium 5-ethyl-5-(piperidin-1-yl)barbiturate [or diethylammonium 5-ethyl-2,4,6-trioxo-5-(piperidin-1-yl)-1,3-diazinan-1-ide], C4H12N+·C11H16N3O3−, (II), closely resemble the corresponding hydrogen-bonded structure in polymorph (Ia). Like many other 5,5-disubstituted derivatives of barbituric acid, polymorphs (Ia) and (Ib) contain theR22(8) N—H...O=C hydrogen-bond motif. However, the overall hydrogen-bonded chain and layer structures of (Ia) and (Ib) are unique because of the involvement of the hydrogen-bond acceptor function in the piperidine group.


Author(s):  
Ping Su ◽  
Xue-gang Song ◽  
Ren-qiang Sun ◽  
Xing-man Xu

The asymmetric unit of the title organic salt [systematic name: 1H-pyrazol-2-ium 2,4,6-trinitrophenolate–1H-pyrazole (1/1)], H(C3H4N2)2+·C6H2N3O7−, consists of one picrate anion and one hydrogen-bonded dimer of a pyrazolium monocation. The H atom involved in the dimer N—H...N hydrogen bond is disordered over both symmetry-unique pyrazole molecules with occupancies of 0.52 (5) and 0.48 (5). In the crystal, the component ions are linked into chains along [100] by two different bifurcated N—H...(O,O) hydrogen bonds. In addition, weak C—H...O hydrogen bonds link inversion-related chains, forming columns along [100].


2016 ◽  
Vol 72 (12) ◽  
pp. 1771-1775
Author(s):  
Yohei Tabuchi ◽  
Kazuma Gotoh ◽  
Hiroyuki Ishida

The crystal structures of title hydrogen-bonded co-crystals, 2C12H16O3·C12H10N2, (I), and 2C13H18O3·C12H10N2, (II), have been determined at 93 K. In (I), the asymmetric unit consists of one 4-(n-pentyloxy)benzoic acid molecule and one half-molecule of (E)-1,2-bis(pyridin-4-yl)ethene, which lies about an inversion centre. The asymmetric unit of (II) comprises two crystallographically independent 4-(n-hexyloxy)benzoic acid molecules and one 1,2-bis(pyridin-4-yl)ethene molecule. In each crystal, the acid and base components are linked by O—H...N hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. The 2:1 units are linkedviaC—H...π and π–π interactions [centroid–centroid distances of 3.661 (2) and 3.909 (2) Å for (I), and 3.546 (2)–3.725 (4) Å for (II)], forming column structures. In (II), the base molecule is orientationally disordered over two sets of sites approximately around the N...N molecular axis, with an occupancy ratio of 0.647 (4):0.353 (4), and the average structure of the 2:1 unit adopts nearly pseudo-C2symmetry. Both compounds show liquid-crystal behaviour.


2016 ◽  
Vol 72 (11) ◽  
pp. 1666-1671 ◽  
Author(s):  
Yohei Tabuchi ◽  
Kazuma Gotoh ◽  
Hiroyuki Ishida

The crystal structures of four hydrogen-bonded co-crystals of 4-alkoxybenzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1), namely, 2C8H8O3·C12H10N2, (I), 2C9H10O3·C12H10N2, (II), 2C10H12O3·C12H10N2, (III) and 2C11H14O3·C12H10N2, (IV), have been determined at 93 K. In compounds (I) and (IV), the asymmetric units are each composed of one 4-alkoxybenzoic acid molecule and one half-molecule of (E)-1,2-di(pyridin-4-yl)ethene, which lies on an inversion centre. The asymmetric unit of (II) consists of two crystallographically independent 4-ethoxybenzoic acid molecules and one 1,2-di(pyridin-4-yl)ethene molecule. Compound (III) crystallizes in a non-centrosymmetric space group (Pc) and the asymmetric unit comprises four 4-n-propoxybenzoic acid molecules and two (E)-1,2-di(pyridin-4-yl)ethane molecules. In each crystal, the acid and base components are linked by O—H...N hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. In (I), (II) and (III), intermolecular C—H...O interactions are observed. The 2:1 units of (I) and (II) are linkedviaC—H...O hydrogen bonds, forming tape structures. In (III), the C—H...O hydrogen bonds, except for those formed in the units, link the two crystallographically independent 2:1 units. In (IV), no C—H...O interactions are observed, but π–π and C—H...π interactions link the units into a column structure.


2019 ◽  
Vol 75 (11) ◽  
pp. 1694-1699
Author(s):  
Kazuma Gotoh ◽  
Hiroyuki Ishida

The structures of two isomeric compounds of 5-nitroquinoline with chloro- and nitro-substituted benzoic acid, namely, 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1), (I), and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1), (II), both C7H4ClNO4·C9H6N2O2, have been determined at 190 K. In each compound, the acid and base molecules are held together by an O—H...N hydrogen bond. In the crystal of (I), the hydrogen-bonded acid–base units are linked by a C—H...O hydrogen bond, forming a tape structure along [1\overline{2}0]. The tapes are stacked into a layer parallel to the ab plane via N—O...π interactions between the nitro group of the base molecule and the quinoline ring system. The layers are further linked by other C—H...O hydrogen bonds, forming a three-dimensional network. In the crystal of (II), the hydrogen-bonded acid–base units are linked into a wide ribbon structure running along [1\overline{1}0] via C—H...O hydrogen bonds. The ribbons are further linked via another C—H...O hydrogen bond, forming a layer parallel to (110). Weak π–π interactions [centroid–centroid distances of 3.7080 (10) and 3.7543 (9) Å] are observed between the quinoline ring systems of adjacent layers. Hirshfeld surfaces for the 5-nitroquinoline molecules of the two compounds mapped over shape index and d norm were generated to visualize the weak intermolecular interactions.


IUCrData ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Ramalingam Sangeetha ◽  
Kasthuri Balasubramani ◽  
Kaliyaperumal Thanigaimani ◽  
Ibrahim Abdul Razak

In the title molecular salt, C5H9N4+·C13H10NO2−·C5H8N4, the asymmetric unit consists of a 6-amino-3,4-dimethyl-1,2,4-triazin-1-ium cation, a 2-anilinobenzoate anion and a neutral 3-amino-5,6-dimethyl-1,2,4-triazine molecule. The typical intramolecular N...H—O hydrogen bond is observed in the 2-anilinobenzoate anion. In the crystal, the protonated N atom and the 3-amino group are hydrogen bonded to the carboxylate oxygen atomsviaa pair of N—H...O hydrogen bonds, forming anR22(8) ring motif. These motifs are further linked with adjacent neutral 3-amino-5,6-dimethyl-1,2,4-triazine molecules by N—H...O and N—H...N hydrogen bonds to produce centrosymmetric six-membered units, enclosingR22(8) andR34(9) ring motifs. They are reinforced by a C—H...N hydrogen bond and stack up theb-axis direction.


Crystals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 520 ◽  
Author(s):  
Augusto Rivera ◽  
John Sadat-Bernal ◽  
Jaime Ríos-Motta ◽  
Michael Bolte

The title co-crystal, 1,3,5,7-tetraazatricyclo[3.3.1.13,7]decane (HMTA, 1)–4-fluorophenol (4-FP) (1/1), C6H12N4·C6H5FO, shows an unusual asymmetric unit that comprises eight independent molecules (Z′′ = 8), four for each component, with four formula units per asymmetric unit (Z′ = 4). In the molecular packing, each HMTA molecule bridges one 4-FP molecule via an O−H···N hydrogen bond to form a two-molecule aggregate. Differences can be observed between the bond lengths and angles of the independent HMTA and 4-FP molecules and those of the molecules in the aggregate. The C−N bonds exhibit different bond lengths in the tetrahedral cage-like structure of the HMTA molecules, but the largest differences between the molecular aggregates are in the bond lengths in the 4-fluorophenol ring. In the crystal, the HMTA and 4-FP molecules form two hydrogen-bonded (O−H···N, C−H···F and C−H···O) dimers of HMTA and 4-FP molecules, A···D and B···C inversion dimers, which generate enlarged R88(34) ring motifs in both supramolecular structures. In both structures, the crystal packing also features additional C−H···F and C−H···O interactions. The A···D and B···C dimers are linked by additional C−H···F and C−H···O hydrogen bonds, forming columns along the a and b axes, respectively. The importance of the C−H···F interaction to the structure and crystal packing has been demonstrated.


Sign in / Sign up

Export Citation Format

Share Document