scholarly journals Bulky 2,6-disubstituted aryl siloxanes and a disilanamine

Author(s):  
Flavia Marszaukowski ◽  
Karen Wohnrath ◽  
René T. Boeré

The crystal structures of 5-bromo-1,3-di-tert-butyl-2-[(trimethylsilyl)oxy]benzene, C17H29BrOSi, (I), 1,3-di-tert-butyl-2-[(trimethylsilyl)oxy]benzene, C17H30OSi, (II), and N-(2,6-diisopropylphenyl)-1,1,1-trimethyl-N-(trimethylsilyl)silanamine, C18H35NSi2, (III), are reported. Compound (I) crystallizes in space group P21/c with Z′ = 1, (II) in Pnma with Z′ = 0.5 and (III) in Cmcm with Z′ = 0.25. Consequently, the molecules of (II) are constrained by m and those of (III) by m2m site symmetries. Despite this, both (I) and (II) are distorted towards mild boat conformations, as is typical of 2,6-di-tert-butyl-substituted phenyl compounds, reflecting the high local steric pressure of the flanking alkyl groups. Compound (III) by contrast is planar and symmetric, and this lack of distortion is compatible with the lower steric pressure of the flanking 2,6-diisopropyl substituents.

Author(s):  
Maurice Beske ◽  
Stephanie Cronje ◽  
Martin U. Schmidt ◽  
Lukas Tapmeyer

The crystal structures of sodium ethoxide (sodium ethanolate, NaOEt), sodium n-propoxide (sodium n-propanolate, NaO n Pr), sodium n-butoxide (sodium n-butanolate, NaO n Bu) and sodium n-pentoxide (sodium n-amylate, NaO n Am) were determined from powder X-ray diffraction data. NaOEt crystallizes in space group P 421 m, with Z = 2, and the other alkoxides crystallize in P4/nmm, with Z = 2. To resolve space-group ambiguities, a Bärnighausen tree was set up, and Rietveld refinements were performed with different models. In all structures, the Na and O atoms form a quadratic net, with the alkyl groups pointing outwards on both sides (anti-PbO type). The alkyl groups are disordered. The disorder becomes even more pronounced with increasing chain length. Recrystallization from the corresponding alcohols yielded four sodium alkoxide solvates: sodium ethoxide ethanol disolvate (NaOEt·2EtOH), sodium n-propoxide n-propanol disolvate (NaO n Pr·2 n PrOH), sodium isopropoxide isopropanol pentasolvate (NaO i Pr·5 i PrOH) and sodium tert-amylate tert-amyl alcohol monosolvate (NaO t Am· t AmOH, t Am = 2-methyl-2-butyl). Their crystal structures were determined by single-crystal X-ray diffraction. All these solvates form chain structures consisting of Na+, –O− and –OH groups, encased by alkyl groups. The hydrogen-bond networks diverge widely among the solvate structures. The hydrogen-bond topology of the i PrOH network in NaO i Pr·5 i PrOH shows branched hydrogen bonds and differs considerably from the networks in pure crystalline i PrOH.


Author(s):  
Július Sivý ◽  
Dušan Bortňák ◽  
Daniel Végh ◽  
Erik Rakovský

The crystals, C11H4BrF5N2S, (I), 1-((4-bromothiophen-2-yl)methylene)-2-(perfluorophenyl)hydrazine and C12H6BrF5N2S, (II), 1-((4-bromo-5-methylthiophen-2-yl)methylene)-2-(perfluorophenyl)hydrazine are molecules with two rings and hydrazone part like a centre of the molecule. The compounds have been synthesized and characterized by elemental, spectroscopic (1H-NMR) analysis. The crystal structures of the solid phase were determined by single crystal X-ray diffraction method. They crystallize in the monoclinic space group with Z = 4 and Z = 2 molecules per unit-cell. The compound (I) crystallizes as a racemate in the centrosymmetric space group and the compound (II) crystallizes as a non-racemate in the non-centrosymmetric space group. The “absolute configuration and conformation for bond values” were derived from the anomalous dispersion (ad) for (II). The crystal structures are revealed diverse non-covalent interactions such as intra- and interhydrogen bonding, π-ring···π-ring, C-H···π-ring and they were investigated. The expected stereochemistry of hydrazones atoms C7, N2 and N1 were confirmed for (I) and (II). The hole molecule of the (I), and (II) possesses “a boat conformation” like a 6-membered ring. The results of the single crystal studies are reproduced with the help of Hirshfeld surface study and Gaussian software.


1983 ◽  
Vol 61 (3) ◽  
pp. 427-433 ◽  
Author(s):  
Miroslaw Cygler ◽  
Janusz Skolimowski

Crystal structures of 2,2,6,6-tetramethyl-4,4-diphenyl-1,4-azaphosphorinanium perchlorate (I) and 2,2,6,6-tetramethyl-4-oxo-4-phenyl-1,4-azaphosphorinan-1-oxyl (II) were determined. Compound I crystallizes in the monoclinic space group C2/c with unit cell dimensions a = 18.2967(7), b = 10.9413(6), c = 20.8714(13) Å, β = 90.79(1)° (at 115 K), and II crystallizes in the orthorhombic space group Pn21a with a = 8.076(1), b = 10.139(1), c = 17.894(1) Å. Intensity data were measured on a diffractometer at 115 K for I and at the room temperature for II. The structures were solved by a combination of heavy-atom and direct methods and refined to R = 0.036 (3968 reflections) for I and 0.039 (1451 reflections) for II.The azaphosphorinane ring adopts a chair conformation in both molecules, being flattened in the P part in I and in the N part in II. In molecule I the equatorial phenyl group is nearly parallel to the approximate plane of symmetry of the molecule, and the axial phenyl group is perpendicular to that plane. In molecule II the P=O bond is axial and the phenyl group is equatorial. The CN(O)C group is not planar. The N—O bond makes an angle of 18.0(3)° with the CNC plane. The CNC angle of 129.3(3)° is larger than that found in nitroxypiperidine analogues.


2015 ◽  
Vol 71 (9) ◽  
pp. 1003-1009 ◽  
Author(s):  
Padmanabha S. Manjula ◽  
Balladka K. Sarojini ◽  
Hemmige S. Yathirajan ◽  
Mehmet Akkurt ◽  
Cem Cüneyt Ersanlı ◽  
...  

The structures of three 3-methyl-1H-1,2,4-triazole-5-thione derivatives are reported. The structure of 4-amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione, C3H6N4S, (I), has been redetermined with an improved model for the H atoms: the non-H atoms of (I) all lie on mirror planes in space groupPbcm, and the H atoms of the methyl group are disordered over two sets of reflection-related atomic sites having occupancy 0.5: two independent N—H...S hydrogen bonds link the molecules of compound (I) into complex sheets. The non-H atoms in the molecules of 4-[(E)-(3,4-dimethoxybenzylidene)amino]-3-methyl-1H-1,2,4-triazol-5(4H)-thione, C12H14N4O2S, (II), despite lying in general positions are close to planar, with a dihedral angle between the two rings of 6.31 (10)°: the molecules of compound (II) are linked by a three-centre N—H...(O)2hydrogen bond into aC(10)C(11)[R12(5)] chain of rings. A second polymorph of 4-[(E)-(5-bromo-2-hydroxy-5-bromobenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione, C10H9BrN4OS, (III), has been identified; the non-H atoms are nearly co-planar with a dihedral angle between the two rings of 1.9 (4)°. There is an intramolecular O—H...N hydrogen bond and the molecules are linked by N—H...S hydrogen bonds, forming centrosymmetricR22(8) dimers. Comparisons are made with some related structures.


2016 ◽  
Vol 72 (8) ◽  
pp. 1153-1158 ◽  
Author(s):  
Marisiddaiah Girisha ◽  
Hemmige S. Yathirajan ◽  
Jerry P. Jasinski ◽  
Christopher Glidewell

In the crystal of compound (I), C14H11ClOS, molecules are linked by C—H...O hydrogen bonds to form simpleC(5) chains. Compound (II), C26H22O, crystallizes withZ′ = 2 in space groupP-1; one of the molecules is fully ordered but the other is disordered over two sets of atomic sites having occupancies 0.644 (3) and 0.356 (3). The two disordered components differ from one another in the orientation of the isopropyl substituents, and both differ from the ordered molecules in the arrangement of the central propenone spacer unit, so that the crystal of (II) contains three distinct conformers. The ordered and disordered conformers each form aC(8) chain built from a single type of C—H...O hydrogen bond but those formed by the disordered conformers differ from that formed by the ordered form.


Author(s):  
Dilovan S. Cati ◽  
Helen Stoeckli-Evans

The complete molecules of the title compounds,N2,N5-bis(pyridin-2-ylmethyl)pyrazine-2,5-dicarboxamide, C18H16N6O2(I), 3,6-dimethyl-N2,N5-bis(pyridin-2-ylmethyl)pyrazine-2,5-dicarboxamide, C20H20N6O2(II), andN2,N5-bis(pyridin-4-ylmethyl)pyrazine-2,5-dicarboxamide, C18H16N6O2(III), are generated by inversion symmetry, with the pyrazine rings being located about centres of inversion. Each molecule has an extended conformation with the pyridine rings inclined to the pyrazine ring by 89.17 (7)° in (I), 75.83 (8)° in (II) and by 82.71 (6)° in (III). In the crystal of (I), molecules are linked by N—H...N hydrogen bonds, forming layers lying parallel to thebcplane. The layers are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the crystal of (II), molecules are also linked by N—H...N hydrogen bonds, forming layers lying parallel to the (10-1) plane. As in (I), the layers are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the crystal of (III), molecules are again linked by N—H...N hydrogen bonds, but here form corrugated sheets lying parallel to thebcplane. Within the sheets, neighbouring pyridine rings are linked by offset π–π interactions [intercentroid distance = 3.739 (1) Å]. The sheets are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. Compound (I) crystallizes in the monoclinic space groupP21/c. Another monoclinic polymorph, space groupC2/c, has been reported on by Cockrielet al.[Inorg. Chem. Commun.(2008),11, 1–4]. The molecular structures of the two polymorphs are compared.


2021 ◽  
Vol 7 (6) ◽  
pp. 77
Author(s):  
Bin Zhang ◽  
Yan Zhang ◽  
Guangcai Chang ◽  
Zheming Wang ◽  
Daoben Zhu

Crystal-to-crystal transformation is a path to obtain crystals with different crystal structures and physical properties. K2[Co(C2O4)2(H2O)2]·4H2O (1) is obtained from K2C2O4·2H2O, CoCl2·6H2O in H2O with a yield of 60%. It is crystallized in the triclinic with space group P1 and cell parameters: a = 7.684(1) Å, b = 9.011(1) Å, c = 10.874(1) Å, α = 72.151(2)°, β = 70.278(2)°, γ = 80.430(2)°, V = 670.0(1) Å3, Z = 2 at 100 K. 1 is composed of K+, mononuclear anion [Co(C2O4)2(H2O)22−] and H2O. Co2+ is coordinated by two bidentated oxalate anion and two H2O in an octahedron environment. There is a hydrogen bond between mononuclear anion [Co(C2O4)2(H2O)22−] and H2O. K2[Co(μ-C2O4)(C2O4)] (2) is obtained from 1 by dehydration. The cell parameters of 2 are a = 8.460(5) Å, b = 6.906 (4) Å, c = 14.657(8) Å, β = 93.11(1)°, V = 855.0(8) Å3 at 100 K, with space group in P2/c. It is composed of K+ and zigzag [Co(μ-C2O4)(C2O42−]n chain. Co2+ is coordinated by two bisbendentate oxalate and one bidentated oxalate anion in trigonal-prism. 1 is an antiferromagnetic molecular crystal. The antiferromagnetic ordering at 8.2 K is observed in 2.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 603
Author(s):  
Prashanth Sandineni ◽  
Hooman Yaghoobnejad Asl ◽  
Weiguo Zhang ◽  
P. Shiv Halasyamani ◽  
Kartik Ghosh ◽  
...  

Herein, we report the syntheses of two lithium-vanadium oxide-fluoride compounds crystallized from the same reaction mixture through a time variation experiment. A low temperature hydrothermal route employing a viscous paste of V2O5, oxalic acid, LiF, and HF allowed the crystallization of one metastable phase initially, Li2VO0.55(H2O)0.45F5⋅2H2O (I), which on prolonged heating transforms to a chemically similar yet structurally different phase, Li3VOF5 (II). Compound I crystallizes in centrosymmetric space group, I2/a with a = 6.052(3), b = 7.928(4), c = 12.461(6) Å, and β = 103.99(2)°, while compound II crystallizes in a non-centrosymmetric (NCS) space group, Pna21 with a = 5.1173(2), b = 8.612(3), c = 9.346(3) Å. Synthesis of NCS crystals are highly sought after in solid-state chemistry for their second-harmonic-generation (SHG) response and compound II exhibits SHG activity albeit non-phase-matchable. In this article, we also describe their magnetic properties which helped in unambiguous assignment of mixed valency of V (+4/+5) for Li2VO0.55(H2O)0.45F5⋅2H2O (I) and +4 valency of V for Li3VOF5 (II).


1999 ◽  
Vol 52 (10) ◽  
pp. 983 ◽  
Author(s):  
Yang-Yi Yang ◽  
Seik Weng Ng ◽  
Xiao-Ming Chen

Three tetranuclear copper(II)–lanthanide(III) complexes of triphenylphosphoniopropionate (Ph3P+CH2CH2CO2−,tppp), namely [Cu2Ln2(tppp)8(H2O)8](ClO4)10·2H 2 O [Ln = EuIII, NdIII or CeIII], were synthesized and characterized by crystallography. The EuIII complex crystallizes in the triclinic space group P1 – with a 16.249(7), b 17.185(11), c 17.807(11) Å, α 69.750(10), β 89.230(10), γ 84.070(10)˚, V 4639(5) Å3, Z 1. In the crystal structures, four tppp ligands bridge a pair of CuII and tetraaquo-EuIII atoms (Cu···Eu 3.527(2) Å) through their µ2-carboxylato ends to form a dinuclear subunit; two of these subunits are additionally linked by one of the CuII -bonded carboxylato oxygen ends, across a centre of inversion, to furnish a dimeric tetranuclear [Cu(tppp)4 Eu(H2O)4]2 species (Cu···Cu 3.323(2) Å). This CuII -bonded oxygen atom occupies the apical site of the square-pyramidal coordination environment of the CuII atom. The EuIII atom is eight-coordinated in a square-antiprismatic geometry. The NdIII and CeIII complexes are isomorphous to the EuIII complex, and only minor differences in bond lengths and bond angles involving the metal atoms are noted.


1990 ◽  
Vol 68 (8) ◽  
pp. 1277-1282 ◽  
Author(s):  
Ivor Wharf ◽  
Michel G. Simard ◽  
Henry Lamparski

Tetrakis(p-methylsulphonylphenyl)tin(IV) and tetrakis(p-methylsulphinylphenyl)tin(IV) n-hydrate have been prepared and their spectra (ir 1350–400 cm−1; nmr, 1H, 13C, 119Sn) and X-ray crystal structures are reported. The first compound is monoclinic, space group C2/c, Z = 4, with a = 21.589(6), b = 6.207(3), c = 22.861(11) Å, β = 93.80(3)° (22 °C); the structure was solved by the direct method and refined by full-matrix least squares calculations to R = 0.043 for 2755 observed reflections. It has 2 molecular symmetry with the methyl group and one oxygen atom completely disordered in both CH3S(O2) groups in the asymmetric unit. The second compound is tetragonal, space group P42/n, Z = 2, with a = b = 15.408(6), c = 6.379(2) Å (−100 °C); the structure was solved by the Patterson method and refined by full-matrix least squares calculations to R = 0.060 for 1209 observed reflections. It has [Formula: see text] molecular symmetry with the whole asymmetric unit disordered. Water molecules occupy positions on parallel 42 axes but molecular packing requirements prevent all sites having 100% occupancy giving n ~ 1 for the hydrate. Keywords: Tetra-aryltins, crystal structures, sulphone, sulphoxide, hydrogen-bonding.


Sign in / Sign up

Export Citation Format

Share Document