scholarly journals Structures of the substrate-binding protein YfeA in apo and zinc-reconstituted holo forms

2019 ◽  
Vol 75 (9) ◽  
pp. 831-840 ◽  
Author(s):  
Christopher D. Radka ◽  
Shaunivan L. Labiuk ◽  
Lawrence J. DeLucas ◽  
Stephen G. Aller

In the structural biology of bacterial substrate-binding proteins (SBPs), a growing number of comparisons between substrate-bound and substrate-free forms of metal atom-binding (cluster A-I) SBPs have revealed minimal structural differences between forms. These observations contrast with SBPs that bind substrates such as amino acids or nucleic acids and may undergo >60° rigid-body rotations. Substrate transfer in these SBPs is described by a Venus flytrap model, although this model may not apply to all SBPs. In this report, structures are presented of substrate-free (apo) and reconstituted substrate-bound (holo) YfeA, a polyspecific cluster A-I SBP from Yersinia pestis. It is demonstrated that an apo cluster A-I SBP can be purified by fractionation when co-expressed with its cognate transporter, adding an alternative strategy to the mutagenesis or biochemical treatment used to generate other apo cluster A-I SBPs. The apo YfeA structure contains 111 disordered protein atoms in a mobile helix located in the flexible carboxy-terminal lobe. Metal binding triggers a 15-fold reduction in the solvent-accessible surface area of the metal-binding site and reordering of the 111 protein atoms in the mobile helix. The flexible lobe undergoes a 13.6° rigid-body rotation that is driven by a spring-hammer metal-binding mechanism. This asymmetric rigid-body rotation may be unique to metal atom-binding SBPs (i.e. clusters A-I, A-II and D-IV).

2011 ◽  
Vol 24 (5) ◽  
pp. 548-555 ◽  
Author(s):  
Bas M. van Dalen ◽  
Kadir Caliskan ◽  
Osama I.I. Soliman ◽  
Floris Kauer ◽  
Heleen B. van der Zwaan ◽  
...  

Author(s):  
S Choura

The reduction of residual vibrations for the position control of a flexible rotating beam carrying a payload mass is investigated. The common practice used to find the position control of a flexible multi-link arm is to assign a torque actuator to each joint while the payload mass is kept fixed relative to the end-link during the time of manoeuvre. This paper examines the stability of the system if either the payload is freed accidentally to move along the beam during the time of manoeuvre or is allowed to span the beam in a desired path for control purposes. A candidate Lyapunov function is constructed and its time rate of change is examined. It is shown that the use of a PD (proportional plus derivative) torque control yields a convergence of residual vibration to zero, an attainment of the rigid-body rotation to a prespecified desired angle of manoeuvre and a constant velocity of the payload mass as it moves relative to the beam. For manipulation purposes, an additional control force is added to the moving actuator in order to regulate its axial motion. It is shown that allowing the axial motion of the payload mass in a prescribed manner leads to a considerable reduction of its residual vibrations as compared to the case where the payload mass is fixed to the beam tip during the time of manoeuvre. Stability is also verified through simulations of rigid-body rotation and payload axial motion track prespecified reference trajectories.


2013 ◽  
Vol 20 (7) ◽  
pp. 073502 ◽  
Author(s):  
A. Fruchtman ◽  
R. Gueroult ◽  
N. J. Fisch

2012 ◽  
Vol 712 ◽  
pp. 3-6 ◽  
Author(s):  
Peter W. Duck

AbstractRotating, stratified flows are important in a wide variety of both geophysical and engineering applications. Whilst ‘steady state’ flows of this type are generally very simple (in effect, rigid body rotation), the effect of abruptly altering (even a little) the rotation rate can induce significant temporal flow disruptions, made all the more complicated when the fluid is bounded inside a closed finite container, a problem studied both experimentally and theoretically by Foster & Munro (J. Fluid Mech., this issue, vol. 712, 2012, pp. 7–40).


1988 ◽  
Vol 30 (4) ◽  
pp. 451-459 ◽  
Author(s):  
A. Bhattacharya ◽  
B. Kishor

Sign in / Sign up

Export Citation Format

Share Document